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Abstract—Genome sequencing technology has witnessed
tremendous progress in terms of throughput as well as cost
per base pair, resulting in an explosion in the size of data.
Consequently, typical sequence assembly tools demand a lot
of processing power and memory and are unable to assemble
big datasets unless run on hundreds of nodes. In this paper, we
present a distributed assembler that achieves both scalability
and memory efficiency by using partitioned de Bruijn graphs.
By enhancing the memory-to-disk swapping and reducing the
network communication in the cluster, we can assemble large
sequences such as human genomes (452 GB) on just two nodes
in 14.5 hours, and also scale up to 128 nodes in 23 minutes.
We also assemble a synthetic wheat genome with 1.1 TB of
raw reads on 8 nodes in 18.5 hours and on 128 nodes in 1.25
hours.

Keywords-genome assembly; big data;

I. INTRODUCTION

The last decade has witnessed huge leaps in the ad-
vancement of sequencing technology both in terms of
throughput and cost per base pair. As a consequence,
the sizes of the raw sequencing data are on the rise
and the computing resources haven’t been able to keep
up. Typically, in order to assemble a truly big (order
of terabytes) dataset, the state-of-the-art assembly tools
need either scaled-up nodes with terabytes of RAM or
scaled-out clusters with hundreds of nodes. However, a
vast majority of the research community do not have
access to such extreme computing resources.

Most of the widely used distributed assemblers are
designed with the assumption that the users will have
enough resources to deal with all data sizes. However, this
is not always the scenario, particularly in case of terabyte-
scale datasets where these tools run out of memory on
small clusters. Furthermore, the trends in sequencing
technology shows an increasing demand for processing
power and memory in order for the sequences to be
assembled. Consequently, researchers will soon be unable
to assemble the larger genomes on the HPC clusters
available to them. Therefore, to keep in-tune with the de-
creasing cost of sequencing, there is a need for assembly
tools to be more memory efficient.

Figure 1 categorizes representative assemblers based on
memory utilization and scalability. On one hand, we have
the first generation assemblers which are multithreaded

applications that run on a single node but require ter-
abytes of memory to assemble the larger genomes. On the
other hand, we have distributed assemblers that still need
huge amounts memory, but can be run on a distributed
environment if there isn’t enough memory on a single
node. At the other end of the spectrum, there are a few
assemblers that use succinct data structures to assemble
large genomes on single nodes, but are not designed to
run on distributed systems. In this paper, we present
Lazer (large-scale genome assembly on ZeroMQ), a dis-
tributed assembly tool designed to have a low memory
footprint and yet is capable of scaling up to hundreds of
nodes.

Experiments on a human genome dataset (452 GB)
demonstrate that Lazer’s performance is often better than
others in terms of execution times, while having better
scalability with a much smaller memory requirement.
Moreover, Lazer successfully assembles a 1.1 TB synthetic
wheat dataset whereas the other assemblers have failed
to execute on it.
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Figure 1. Classification of assemblers wrt. scalability and memory
efficiency

The rest of the paper is organized as follows. Section
II describes the background and challenges of the de
Bruijn graph-based de novo assembly, and Section III
discusses the current state of the art in the realm of
distributed assemblers. In Sections IV and V, we ex-
plain the methodology and implementation details of our



proposed assembler. Section VI evaluates our tool on a
variety of datasets and cluster configurations followed by
a conclusion of our study in Section VII.

II. BACKGROUND

Genome sequencing is the process of chemically mark-
ing (parsing) nucleotides in order to find their exact
order in the DNA. Since the state-of-the-art sequencing
machines cannot accurately sequence the entire genome
in one go, they create multiple clones of the genome,
splice them into smaller fragments, and sequence them
to produce short reads. De novo assembly is the process
of reconstructing the entire original sequence from short
reads, without any backbone sequence (i.e., reference
genome) to refer to.

The principal challenge of the assembly process is to
find out the overlaps between all pairs of short reads.
In order to accomplish this, the short reads are further
broken down into smaller overlapping sub-sequences of
length k, called k-mers. These k-mers are then used to
build a de Bruijn graph using the following rules:

1) Each unique k-mer is represented as a vertex in the
graph. If the same k-mer is generated more than
once from one or more short reads, they must be
mapped to the same vertex.

2) An edge exists between two vertices vi and v j if
their corresponding k-mers, ki and k j , have an
overlap of k −1 characters between them.

The next phase of the assembly is a lossless compres-
sion of each vertex chain (i.e., a path of vertices with
one in-degree and one out-degree) into a single super-
vertex called contig. The compression can be performed
by traversing the graph starting from the vertices having
an unequal in-degree and out-degree (such as forks, joins,
etc). Each contig will contain the original sub-sequence(s)
from which the participating k-mers were produced. The
compressed graph can then be used in a wide variety of
contig extension strategies. Figure 2 presents an example
of the process described above.

Note that the same k-mer can appear in multiple short
reads and there is no way to generate the vertices in the
order in which they appear in the graph. This implies that
they must be stored in an efficient data structure (such as,
an in-memory hash map) in order to facilitate the quick
lookup required during traversal. Moreover, for extreme
scale parallelism the hash map needs to be globally visible
across a distributed computing environment. This global
view enables multiple threads across multiple servers to
access the entire graph all at once.

III. RELATED WORK

De novo assembly is a widely studied problem so
there are many assembly tools to choose from. The
computation of older assemblers such as Velvet [1],
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Figure 2. The genome assembly pipeline (a) A set of overlapping short
reads covering the genome. (b) Generation of 4-mers from short reads.
(c) Creation of de Bruijn graph (the numbers below the k-mers denote
their frequency across all reads). Note that k-mer TAGA appears in both
the second and the fifth short reads. In the second read, the k-mer
following TAGA is AGAT, whereas in the fifth read, the following one
is AGAG.Therefore, the vertex TAGA has two outgoing edges to vertices
AGAT and AGAG (d) Compression of vertex chains into contigs.

ALLPATHS-LG [2], SOAPdenovo [3], etc. are restricted to
a single node, and hence these tools cannot address the
challenges involved in next-generation sequencing data.
Furthermore, these assemblers are severely limited due
to inefficient memory management and are incapable of
assembling terabytes of data in most practical cases.

To overcome the large memory requirements, Minia [4],
Platanus [5], MegaHit [6] make use of several succinct
data structures (e.g., Bloom filter, etc.) and encoding
schemes and make it possible to assemble large se-
quences in a single workstation. However, their perfor-
mance in terms of execution time is still limited by the
number of cores available in a single machine. Moreover,
given the trends of NGS dataset sizes, it is not clear if
these assemblers will be able to accommodate the de
Bruijn graphs in the memory of a single machine in
the future. Hence, a distributed approach is necessary to
alleviate the problems involved in large scale NGS dataset.

Assemblathon2 [7] evaluates various de novo assem-
blers using a variety of sequence datasets. The only
distributed assemblers evaluated in [7] are ABySS [8]
and Ray [9], both of which are based on MPI (Message
Passing Interface). We have experimentally observed that



on large datasets, Ray could not scale up, and ABySS was
unable to run at all. PASHA [10] is another distributed
assembler, also based on MPI but is severely constrained
due to that fact that some of its stages are not distributed.
SWAP [11] is better than ABySS, Ray, and PASHA in terms
of scalability and execution time, but has a huge memory
overhead.

To tackle the scalability problem, assembly tools based
on Apache Hadoop or Apache Spark have also been pro-
posed. Contrail [12] was the first de Bruijn graph-based
assembler built on Hadoop, followed by CloudBrush [13],
which was based on string graphs. However, in case of
extremely large datasets their performances deteriorate
due the disk-based computation (i.e., huge amount of
disk I/O is required) of Hadoop. Some assemblers such as
GiGA [14] used a hybrid approach by using Hadoop for
building the graph and Apache Giraph for compressing
it. Other developments include Spaler [15], which is a
de novo assembler built on Spark and GraphX. Although
Spaler appears to perform well on datasets up to 100 GB,
we could not access its code to evaluate it on the terabyte-
scale datasets.

IV. METHODOLOGY

Our tool comprises of the first two phases of the
assembly pipeline - de Bruijn graph creation and com-
pression. In principle, the graph can be created simply
by loading the k-mers into an in-memory hash map, thus
implicitly merging unique k-mers to the same vertex. A
more memory-efficient option would have been to use
a map-reduce-based approach where key-value pairs are
partitioned into buckets and then each bucket is reduced
by sorting or indexing the keys. However, regardless of
the method used to build the graph, it must reside in an
in-memory hash table in order to be traversed.

This approach poses a few significant challenges.
Firstly, either there must be an enormous amount of
memory in a single machine, or the hash map must
be distributed. Secondly, in case the hash map is dis-
tributed, the lookup time is dominated by the network
latency, which is generally in the order of microseconds
as opposed to the nanosecond latencies of main memory.
This network latency has a significant impact on the total
execution time.

We alleviate the problems of scalability and memory
efficiency to some extent by partitioning the de Bruijn
graph. Our partitioned graph has two advantages:

• It does not require the entire graph to be loaded in
memory at once. The vertices within each partition
can be indexed, locally compressed, and spilled onto
disk until all partitions are processed. Finally, all
partitions can be loaded at once and compressed one
last time.

• Each partition can be compressed by a thread or a
group of threads within a single node in the cluster.
This local processing reduces the necessity of syn-
chronization and communication between threads
and cluster nodes, thus enhancing the degree of
parallelism.

We use minimum substring partitioning (MSP) [16] to
distribute the k-mers among the different buckets. In this
scheme, a smaller window of size m is slid over each k-
mer Ki to generate a set Si of k −m+1 substrings. Since
|Σ| = 4, each substring in Si can be uniquely mapped to
one of 4m partitions. The partition to which Ki would be
mapped is determined by the alphabetically smallest sub-
string in Si . The motivation behind using this approach
instead of an ordinary hash function is that overlapping k-
mers (where the prefix of one is the suffix of the another),
which will be close to each other in the final de Bruijn
graph, will have a better chance of being mapped to
the same bucket. In addition, this heuristic allows us
to partition the graph while it is being generated from
the reads. Therefore, we can reap the obvious benefits
of working with smaller sub-graphs without having a
separate partitioning phase in the assembly pipeline.

In order to reduce the memory footprint even further,
we propose a two-level partitioning scheme. The first level
(L1) partition of a k-mer is determined by the minimum
substring as explained earlier. The second level (L2) is
determined by the position of the minimum substring in
the k-mer. Thus, for each L1 partition, there are k−m+1
L2 partitions. With this scheme, whenever an L1 partition
is locally compressed, at most two consecutive L2 parti-
tions are required to be loaded in memory at once, and
the compression proceeds in a lockstep fashion. Figure
3(a) depicts the partitioning scheme described above and
3(b) shows the local compression of L1 partition Pi .

We describe our proposed techniques for the two
phases in more detail as follows.

A. De Bruijn graph creation

1) Map phase: In this phase, each mapper thread reads
the sequences of nucleotides from files assigned to it. For
each sequence of length l , a mapper slides a window of
size k to generate l − k intermediate key-value pairs. A
key is a byte-encoded k-mer, and the value is a tuple
consisting of the two nucleotides at the either end of the
window. We call them "intermediate" because multiple
short reads may generate the same key whose values must
be merged to obtain a final key-value pair. Conceptually,
each key represents a vertex of the de Bruijn graph, and
its intermediate value represents at most one incoming
edge and at most one outgoing edge. K -mers at the
leftmost and rightmost end of the sequence are padded
with special characters in the value tuple to represent no
incoming and outgoing edges respectively. Each key-value
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Figure 3. The two level partitioning scheme and local compression.
(a) In this scenario, the k-mer size is 17 and the substring size is 9.
All the overlapping k-mers here have the same minimum substring
(AAAGCTATA) and are thus mapped to the same L1 partition. However
in each of the k-mers, the substring occurs at different positions and
are hence mapped to different L2 partitions. (b) The compression begins
with the vertices in L2 partition Pi8 as seeds. The vertices in Pi7 are
loaded in a hash map, merged with the seeds and removed from map.
This process continues until the vertices in L2 partitions Pi7 through
Pi0 are merged with those in Pi8

pair is then placed into the appropriate partition based
on the minimum substring of the key.

2) Load balancing: Unlike conventional hash func-
tions, the minimum substring partitioning scheme is
locality sensitive, and its main purpose is to maximize the
probability of a collision for similar strings. Consequently,
the distribution of k-mers across different L1 and L2
partitions is severely skewed. Moreover, we have observed
that on a number of datasets, almost half of the partitions
remain empty. The distribution of intermediate key-value
pairs among the non-empty L1 partitions in the Yoruban
male dataset can be seen in figure 4

Clearly, there are a few partitions such as partition id 0,
that are much larger than the average. In the reduce phase
where each node handles a subset of the partitions, if the
distribution is not uniform, one of the peer nodes of the
cluster might get more than its share of data consequently
dominating the total execution time, or worse, running
out of memory. To tackle this problem, after all reads
are processed, the total number of intermediate key-value
pairs for each partition is collected from all the nodes, and
the partitions are stored in a max-heap based on their
sizes. They are then distributed across the nodes using
the Longest Processing Time (LPT) scheme.

3) Reduce phase: In this phase, each reducer thread
picks up one of the L1 partitions assigned to it and starts
reducing the values corresponding to each unique key in
the list. This reduce phase has two objectives:

1) The same k-mer generated from different sequences
can have different nucleotides at its ends. These
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Figure 4. Imbalance of distribution in intermediate data among
different partitions

nucleotides which form the incoming and outgoing
edges of the vertex represented by the k-mer need
to be merged in the final de Bruijn graph. Since the
maximum in-degree and out-degree of a vertex is 4,
the edges can be encoded in a single byte.

2) The number of times a k-mer (regardless of the
outgoing edges) occurs in the entire dataset needs
to be tracked. This frequency information is used in
subsequent stages to recognize erroneous structures
in the graph caused by sequencing errors.

After this phase, all subgraphs within each partition are
locally compressed.

B. Graph compression phase

Following reduction and local compression, the vertices
are distributed among the nodes for further extension.
The vertices that have exactly one incoming edge and
at most one outgoing edge are loaded in a distributed
hash map. All other vertices are appended to a distributed
list and act as seeds for the extension. After the graph is
loaded, the workers traverse the linear chains, starting
from the vertices in the list. Each worker looks up the
hash map in order to get the next vertex in the chain it
is working on.

We guarantee that a single path cannot be traversed
by more than one thread making our algorithm lock-
free and enhancing scalability. Clearly, there can be an
imbalance in load distribution between different threads
depending on the lengths of the paths. However, we have
observed that with real datasets, the imbalance is not se-
vere enough to warrant the overhead of synchronization.



V. IMPLEMENTATION

Our assembler is built on top of ZeroMQ
(http://zeromq.org/), which is an embeddable framework
for concurrency and communication. It provides a
threading library based on Hewitt’s Actor Model [17]
of concurrent computation. The semantics of this
model states that an actor is an independent “universal
primitive” for concurrency that can only modify its own
state and exchange atomic messages with other actors.
These concepts differ from the idea of a global state
shared by multiple threads, hence actors don’t require
locks, semaphores or critical sections.

ZeroMQ also provides an intelligent transport layer for
low-latency communication and is best suited for small
packets. Moreover, it provides uniform message passing
semantics between actors (threads), processes, and boxes
(cluster nodes). Accordingly, a pair of ZeroMQ sockets can
talk to each other over inproc, ipc, or tcp protocols.

Master
tcp://

inproc://

Worker

tcp://

Node-manager
inproc://

inproc://

Worker
inproc://

Worker

tcp://

Node-manager
inproc://

inproc://

Worker

Distributed File System

High Speed Interconnect

Figure 5. System overview of Lazer

Figure 5 shows the high level system overview of Lazer.
It consists of a master process, which is responsible
for the distribution of tasks, synchronization between
nodes and load-balancing. Moreover, each node runs a
slave process consisting of a Node-manager actor which
spawns and manages worker actors. Since a manager
and its workers reside in the same address space, they
can connect to each other via inproc protocol. The
node-managers connect to the master via tcp. All pro-
cesses have access to a distributed file system and can
send/receive messages to/from each other via a high
speed network.

This architecture forms the basis on which all the
phases are implemented. The subsections that follow, de-
scribe the implementations and actor interactions during
each phase in more details.

A. Map Phase of Graph Creation

Figure 6 shows the different actors at play and their
communication patterns during the map phase. The
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Figure 6. Actor interactions during Map-phase

node-manager spawns three types of workers: mappers,
partitioners and sinks. All these actors have the same par-
ent process and can communicate via inproc. Mappers
ask node-managers for input batches and the request
is relayed to the master. On receiving a batch, mapper
threads parse the reads into (k+2)-mers (i.e. the k-mer
and the nucleotides at its ends). Subsequently, each (k+2)-
mer is mapped to one of the available partitions and sent
to the partitioner actor responsible for it. The process is
described in Algorithm 1.

Algorithm 1 Mapper actor
1: Actor MAPPER

2: while mor e_batches do
3: ZMQ_SEND(manag er,GET _B AT C H)
4: r ead_batch ← ZMQ_RECV(manag er )
5: for read r in r ead_batch do
6: tuple_ar r ay〈kmer, i n,out〉T ←

PARSE_READ(r )
7: for tuple k2 in T do
8: 〈PL1 ,PL2〉← MIN_SUBSTR_HASH(k2.kmer )
9: i d ← PL1 mod |par ti t i oner s|

10: ZMQ_SEND(par ti t i oner s[i d ],k2,PL1 ,PL2 )
11: end for
12: end for
13: end while
14: end Actor



Partitions are maintained as in-memory lists and each
partitioner is assigned a subset of those lists. The amount
of intermediate data generated at each node is often
much more than the memory available. Hence, a subset
of the data must be spilled onto disks. Here, we answer
the following questions pertaining to data spillage:

1) How do we decide what to spill?
2) How is the spilled data stored on disk?

Assuming there are p partitions, each node begins with
p empty lists. Partitioners receive intermediate key-value
pairs from mappers and append them to appropriate lists,
according to their minimum substrings. Data is appended
to lists in fixed-size chunks, and the total number of
chunks across all partitions in a node is tracked. When-
ever a new chunk is created, the total chunk count is
compared with a threshold, and if it is larger than the
threshold, the chunk is spilled to disk. By configuring the
threshold, one can limit the memory-per-node that can
be used to store the intermediate data. If there is enough
memory, intermediate data isn’t spilled onto disk at all,
thus removing the I/O bottleneck during reduction.

Since the data must be spilled in a way that allows
entire partitions to be read from the disk at once, storing
key-value pairs in flat files is not efficient. Instead, we use
a disk-based NoSQL database to index the spilled data.
If each partition maintains a current chunk count, the
unique keys for the spilled blocks can be generated from
the partition id and the chunk id. During reduction, all
the ni blocks spilled in a partition Pi can be retrieved
by making GET calls to the database using keys ranging
from i .0 to i .(ni −1).

We use RocksDB (http://rocksdb.org/) as the underly-
ing NoSQL database. It is an embeddable persistent key-
value store based on log-structured merge trees and can
provide a partial ordering of keys based on fixed-length
prefixes. Since we dont care how the data is ordered on
disk as long as they are grouped by partitions, we can
assign the first log (p) bits of keys as the prefix. During
reduction of a partition Pi , we can iterate over the key-
space with prefix i . Under this scheme, insertion and
retrieval perform better than those in databases with total
ordering of keys.

Furthermore, RocksDB provides a number of useful
features such as multithreaded compactions, thread-safe
reads, bloom-filters for caching, and several other param-
eters that can be configured based on the underlying
storage system. All of our experiments were run on
spinning disks, but we believe the reduce phase will get a
significant performance boost if the database is hosted on
SSDs. Although RocksDB supports multi-threaded reads,
all writes to the database must be serialized. Hence write
access to the database is limited to a single actor (sink)
that handles all PUT requests from the partitioners, as
shown in Figure 6 and described in Algorithm 2.

Algorithm 2 Partitioner actor
1: Actor PARTITIONER

2: cache ← l i st s[|L1|][|L2|]
3: while more_kmers do
4: (k2,PL1 ,PL2 ) ← ZMQ_RECV(mapper s)
5: LIST_APPEND(cache[PL1 ][PL2 ],k2)
6: if cache_overflow then
7: ZMQ_SEND(si nk,cache[PL1 ][PL2 ])
8: end if
9: end while

10: end Actor

B. Reduce Phase of Graph Creation

Note that in the map phase, there is no communication
between nodes. In other words, if there are p partitions,
each of the nodes will initially contain p buckets to hold
the intermediate data. This is done in order to achieve a
balanced distribution of partitions in the reduce phase.
Before the the intermediate data is merged, they must be
shuffled around so that for a partition Pi all intermediate
data generated within Pi in all the nodes must be moved
to the the node responsible for reducing Pi . Figure 7
shows how the reducers fetch intermediate data from the
NoSQL database servers located at the different nodes.
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Figure 7. Actor interactions during Reduce-phase

Shuffle: If the intermediate data is fully contained in
memory, the performance of the shuffle phase becomes
almost entirely dependent on the network throughput. We
have experimentally observed that with the high-speed
networks available in most HPC clusters, the memory to



memory data transfer does not create any bottlenecks
in the process (i.e., the processor utilization remains
fairly high). However, this changes when the intermedi-
ate data is spilled onto disk. In such scenarios, shuffle
performance is dictated by the disk read throughput,
which is typically much less than the network throughput.
Moreover, if there is a single disk per node, as is the
case in most HPC clusters, multiple threads reading from
the disk increases contention and adversely affects the
performance.

The impact due to disk I/O bottleneck is offset to
some extent by using a block pre-fetching scheme on the
database server side and a scatter-gather approach on the
client side. Both of these features are enabled by ZeroMQ’s
high-speed asynchronous messaging engine. On the client
side, each reducer starts with a set containing all the
nodes and scatters requests for a chunk of intermediate
data. This scheme serves two purposes:

1) Since each reducer sends requests to the servers
running on all nodes, the database servers share the
load uniformly. Moreover, the fact that each reducer
only asks for a small chunk prevents starvation of
other reducers, albeit at the cost of a higher number
of messages in the network.

2) Since messages are transmitted and received asyn-
chronously by ZeroMQ I/O threads, reducers can
immediately start working on the chunks as soon as
they arrive. Therefore, the latency is reduced to the
time between the transmission of the last request
to the arrival for the first response.

On the database side, when a server receives a request for
a chunk of partition Pi from a reducer, it checks if any
blocks in Pi reside in memory. Otherwise it fetches one
from disk and responds with it. As the response is being
sent, the server checks if the next block is in memory. If
it is not, it pre-fetches one from disk. The pseudo-code
for the reducer actor is shown in Algorithm 3

An interesting observation worth mentioning at this
point is that on some datasets, a single partition can be so
much larger than the others that the reducer handling it
might keep on running long after the others are finished.
This occurs more often when the program is run on a
huge number of cores, where each reducer deals with a
very small number number of partitions, most of which
have a very small amount of intermediate data, and a
select few are massive.

This effect can be seen in figure 10, where partition id
0 clearly stands out from the rest. This is an inherent dis-
advantage of using the minimum substring partitioning
scheme, something that comes as a compromise for the
reduced memory footprint. Although the effect of these
mega-partitions can be somewhat offset when run in a
small cluster, they completely destroy the scalability as
the number of nodes is increased.

Algorithm 3 Reducer actor

1: Actor REDUCER(PL1 )
2: l i st ← NU LL
3: for PL2 ←|L2|to1 do
4: hashmap ← MERGE(PL1 ,PL2 )
5: l i st ← EXTEND(l i st ,hashmap)
6: end for
7: end Actor

8: procedure MERGE(PL1 ,PL2 )
9: while nodeset_not_empty do

10: ZMQ_PUBLISH(nodeset ,PL1 ,PL2 )
11: for i = 1 to |nodeset | do
12: (n,chunk) ← ZMQ_RECV(nodeset )
13: if chunk_is_empty then
14: REMOVEFROM(nodeset ,n)
15: else
16: add/merge chunk to hashmap
17: end if
18: end for
19: end while
20: end procedure

21: procedure EXTEND(l i st ,hashmap)
22: for all vertex v in list do
23: if OUT(v) = 1 and v.next ∈ hashmap then
24: APPEND(v,hashmap[v.next ])
25: ERASE(hashmap, v.next )
26: end if
27: end for
28: Move all vertices from hashmap to list
29: end procedure

Its apparent that the size of the substring chosen for
MSP will have a significant impact of the skewness of the
distribution. Thus with some trial-and-error, the substring
size can be chosen in a way such that the problem can
be alleviated. However, these optimum sizes may widely
vary across different datasets. Therefore, the substring size
must be fixed by the end user for each new experiment,
which is a very undesirable side effect.

To relieve the user of this burden, we only process the
smaller partitions with a single thread. All other partitions
which are larger than a preset threshold are reduced and
locally compressed by all available threads within one of
the nodes. After running experiments on a number of
datasets we have observed 5×108 to be a good thresh-
old value (it can be modified by the user if required).
The multithreaded algorithm is very similar to the one
described in Algorithm 3, barring a few modifications
for synchronization, and is therefore omitted from this
paper.



C. Graph Compression Phase

During this phase, all partitions of the graph must
be loaded into memory for further compression and be
globally visible to all nodes in the cluster. Moreover,
traversal of the graph demands an O (1) lookup of vertices,
which implies that they must be stored in a distributed
in-memory hash-map. Since, at this stage there are no
guarantees that adjacent vertices will reside in the same
address space, the traversal may require network commu-
nication for every other vertex in the chain which imposes
strict latency constraints on the hash-map

We observed that the off-the-shelf distributed hash-
tables fail to satisfy the low-latency constraints required
for graph traversal, and the low memory footprint we are
trying to achieve. Moreover, these general-purpose tools
come with features such as load-distribution and fault
tolerance, which add extra complexity not necessary for
our workload.

To get around these issues, we mimic a distributed
hash-map, by using an array of independent instances
of hash-maps running on each node, and a pre-defined
hash-function fh known to all clients. The servers are
oblivious to one another, and the clients maintain con-
nections to all servers in the cluster. For any key-value
pair 〈K ,V 〉, the server id at which the pair will reside is
determined by fh(K ) mod n, where n is the number of
server instances. This scheme provides a one-hop access
to the hash-map since any client would be able to GET
a value residing at any node, as long as the key is known
to it.

We have chosen Sparsehash (code.google.com/p/
sparsehash) as the underlying data structure for the
distributed hash-map, since it has the lowest memory
footprint. Moreover, due to ZeroMQ’s low-latency mes-
sage transmission and one-hop accesses to each server
instance, we have observed very good performance, even
with random accesses on billions of keys.

To increase the throughput even further, we employ an
asynchronous pipeline of GET requests, where workers si-
multaneously work on a batch of b paths (simultaneously
extend b seeds). At each step, a worker requests b values
from the hash-map corresponding to the outgoing edges
of paths in the current batch. Once again, since mes-
sage transmissions are asynchronous, a request returns
immediately with a placeholder for a future result. The
rationale here is that if the batch size is large enough, by
the time the last request is sent, the response for the first
one would have arrived, thus hiding the network latency.
When a path reaches its end, it is removed from the batch
and replaced with a new seed.

VI. EVALUATION

A. Overview of the Datasets

To analyze the performance characteristics of Lazer,
we use two different datasets: 1) a synthetic wheat
(Triticum aestivum) genome dataset of size 1.1TB from
Joint Genome Institute 1 and 2) a Yoruban male genome
dataset of size 452GB from National Center for Biotech-
nology Information 2. During the process of assembly, the
first dataset (i.e., the wheat genome) produces more than
4 TB of temporary data, whereas the second one (i.e., the
human genome) produces almost 750GB.

B. Overview of the Experimental Testbed

To evaluate the performance of Lazer in a distributed
environment, we use QueenBeeII3 supercomputing clus-
ter located at LSU. Each compute node of QueenBeeII has
two 10-core 2.8 GHz E5-2680v2 Xeon processors, 64GB
DRAM and 500GB hard disk drive. Although QueenBeeII
has a total of 480 nodes with this configuration, only
128 of them are available for running a single job. All
the nodes are connected by a 56Gb/sec InfiniBand (FDR)
interconnect with 2:1 blocking ratio.

C. Demonstrating the Scalability of Lazer

1) Assembly of Wheat Genome (1.1TB): To demonstrate
the scalability of Lazer, we first assemble the relatively
larger wheat genome (1.1TB) with different number of
nodes in QueenBeeII cluster. Figure 8 shows the execution
time of different phases of Lazer while assembling the
wheat genome.

Note that the map phase is the most scalable of
all phases which is not surprising since this phase is
embarrassingly parallel and there is no network com-
munication involved in it. It can also be observed that
the compression phase makes up a small fraction of the
total execution time and is also scalable even though
it involves a distributed key-value store which in-turn
is dependent on network latency. We speculate that the
asynchronous pipelined accesses to the hash-map and the
lock-less traversal algorithm have a significant impact on
the scalability of compression.

On the other hand, the reduce phase appears to scale
worse than the others due to the large amount of spilled
intermediate data that must be shuffled during reduction.
Since each node has a single disk, it presents a bottleneck
while reading data and prevents a high CPU utilization.

It is worth mentioning here that we could not assemble
this dataset using any other assembler even when us-
ing the maximum amount resources (i.e., 128 nodes of
QueenBeeII cluster) available to us.

1https://gold.jgi.doe.gov/projects?id=Gp0039864
2http://www.ncbi.nlm.nih.gov/sra/?term=SRA000271
3http://www.hpc.lsu.edu/resources/hpc/system.php?system=QB2
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Figure 8. Execution times of Lazer on the synthetic wheat W7984
dataset (1.1 TB): Neither Ray nor SWAP could assemble the 1.1 TB wheat
dataset with 128 nodes due to insufficient memory or wall-clock timeout
in the cluster

2) Assembly of human genome (452GB): To compare
Lazer’s overall execution time and scalability with other
assemblers, we used a relatively smaller human genome
data set (452GB). Figure 9 compares the execution time
of Lazer with two other genome assemblers, Ray and
Swap while assembling the 452GB human genome. It can
be easily observed that Lazer scales almost linearly with
increase in number of nodes.
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Figure 9. Execution times of Lazer, Swap, and Ray on the Yoruban male
dataset (452 GB): Ray cannot complete assembly on 4 nodes; SWAP runs
out of memory with 32 nodes. Both axes are in log scale

We were unable to run SWAP on 32 nodes and Ray
on 4 nodes due to out-of-memory errors. We observed
that Ray’s scalability degrades after 32 nodes, and the
execution time increases going from 64 to 128 nodes.
Lazer, on the other hand, can assemble the dataset on
just 2 nodes, and yet shows a near-linear scalability when
running on different configurations.

D. Demonstrating Memory-efficiency of Lazer

The memory efficiency of Lazer is evident from the fact
that we could not run the 1.1TB wheat genome using the
other assemblers even using the maximum amount of
resources available to us i.e., 128 nodes of QueenBeeII
providing 8TB (64GB ×128 nodes) of aggregated DRAM.
On the other hand, Lazer was able to assemble it using
only 8 nodes i.e., 512GB (64GB ×8 nodes) of memory.

Figure 9 also demonstrates the memory efficiency of
Lazer compared to Ray and Swap 4. It is apparent that
Lazer successfully assembles the human genome using
only 2-nodes i.e., 128GB (64GB ×2 nodes), whereas Ray
fails to complete using 4-nodes (i.e., 64GB × 4 nodes =
256GB of DRAM) or higher. SWAP, although better than
Ray in terms of execution time, was found to be the least
memory efficient in our evaluation. It requires at least 16
times more aggregate memory than Lazer since it runs out
on memory with 32 nodes (i.e. 64GB×32 nodes = 2T B of
DRAM).

The reason behind the memory efficiency of Lazer
is the decrease in the final graph size due to locally
compressible graph partitions. As mentioned earlier, there
is a significant imbalance in the size of the partitions
can easily overwhelm the hardware resources if they are
not carefully distributed among the cluster nodes. In
Figure 10, we show the distribution of intermediate key-
value pairs among peers after the intermediate data is
shuffled. It can be observed that the larger partitions
are scattered across different nodes in a fairly uniform
manner so that no single node is assigned more than one.
The low memory requirement can be very significant to
bioinformatics researchers who may not have access to
large scale compute clusters with hundreds of nodes. In
such scenarios, Lazer can provide real time solution for
assembling huge NGS data set.

VII. CONCLUSION

In this paper, we introduced Lazer, a distributed assem-
bly framework that utilizes a smart partitioning scheme
for de Bruijn graphs to achieve both scalability and mem-
ory efficiency. We have built Lazer on top of the ZeroMQ’s
actor and intelligent messaging framework to achieve low-
latency network communication as well as inter-thread
message passing. Experimental results on terabyte-scale
datasets show that our framework significantly reduces
the memory footprint while ensuring fast assembly. As
future work, we plan to add support for reading input data
from Hadoop distributed filesystem (HDFS) so that Lazer
can be more accommodating to commodity clusters. We
also plan to include error removal and scaffolding phases
to create a complete assembly pipeline.

4In order to have a fair comparison, we only evaluate the contig
generation phases of SWAP and Ray with single end reads.
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Figure 10. Distribution of intermediate key-value pairs across different nodes on 32, 64 and 128-node cluster configurations
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