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Abstract—Spurred by a widening gap between hardware ac-
celerators and traditional processors, numerous bioinformatics
applications have harnessed the computing power of GPUs and
reported substantial performance improvements compared to
their CPU-based counterparts. However, most of these GPU-
based applications only focus on the read alignment problem,
while the field of de novo assembly still relies mostly on CPU-
based solutions. This is primarily due to the nature of the
assembly workload which is not only compute-intensive but
also extremely data-intensive. Such workloads require large
memories, making it difficult to adapt them to use GPUs with
their limited memory capacities. To the best of our knowledge,
no GPU-based assembler reported in the recent literature
has attempted to assemble datasets larger than a few tens
of gigabytes, whereas real sequence datasets are often several
hundreds of gigabytes in size. In this paper, we present a new
GPU-accelerated genome assembler called LaSAGNA, which
can assemble large-scale sequence datasets using a single GPU
by building string graphs from approximate all-pair overlaps.
LaSAGNA can also run on multiple GPUs across multiple
compute nodes connected by a high-speed network to expedite
the assembly process. To utilize the limited memory on GPUs
efficiently, LaSAGNA uses a semi-streaming approach that
makes at most a logarithmic number of passes over the input
data based on the available memory. Moreover, we propose a
two-level streaming model, from disk to host memory and from
host memory to device memory, to minimize disk I/O. Using
LaSAGNA, we can assemble a 400 GB human genome dataset
on a single NVIDIA K40 GPU in 17 hours, and in a little over
5 hours on an 8-node cluster of NVIDIA K20s.

Keywords-Genomics, Computational biology, Memory man-
agement, Big data, Parallel processing

I. INTRODUCTION

Since the start of the Human Genome Project, genomics

has contributed nearly US$1 trillion to the economy [1] and

has been widely used in life sciences as well as applied

fields such as medicine, forensic science, and virology [2]–

[4]. Obtaining an organism’s DNA consists of two steps

- sequencing and assembly. Sequencing is the process of

determining the exact order of nucleotides in the DNA. Since

existing technologies cannot read a whole genome in one go,

they clone it and extract millions of shorter fragments called

short-reads (Fig. 1). Assembly is the process of aligning and

merging short-reads to reconstruct the original sequence.

Rapid advancements in Next-Generation Sequencing

(NGS) technology have drastically reduced the cost of se-

quencing whole genomes, resulting raw datasets to explode

in terms of size and quantity. For instance, a single run of

an Illumina HiSeq 4000 sequencer can generate up to 5

billion 150-nucleotide reads at about $0.05 per million bases.

Although several tools have been developed to process these

high-throughput sequence datasets, assembling a real-world

human genome dataset whose size is nearly half a terabyte

still requires either a scale-up machine with terabytes of

RAM or a scale-out cluster with several dozens of nodes.

Even with the pay-as-you-go pricing model of cloud services

and availability of various big data frameworks, access to

such high-end machines or large-scale clusters is often too

expensive for most researchers. Therefore, it has become

essential to utilize hardware acceleration to expedite the

processing of large genome sequence datasets economically.

Lately, we have observed a growing interest in general-

purpose GPUs (Graphics Processing Units) in domains such

as bioinformatics, molecular dynamics, computer vision,

and most notably in deep learning. We have also noticed

a widening gap between the computational capabilities of

general-purpose CPUs and GPUs. For example, the re-

cently introduced NVIDIA Tesla V100 theoretically has

15 TFLOP/s of single precision (FP32) performance and

delivers 900 GB/sec peak memory bandwidth, which is an

order of magnitude higher than the 85 GB/sec found in the

latest Intel Xeon Processor (E7-8894 v4).

Several specialized tools have already benefited from the

massively parallel processing capabilities of GPUs across

a wide range of bioinformatics applications. These in-

clude NVIDIA’s NVBIO [5], CUSHAW [6], CUSHAW2-

GPU [7], BarraCUDA [8], SOAP3 [9], SARUMAN [10],

PUNAS [11], and GPU-based tools with optimized BWT

(Burrows-Wheeler Transformation) [12], [13] and Smith-

Waterman algorithm [14]. However, most of these studies

focus on read alignment, whereas sequence assembly is not

well-addressed because of the limited GPU device memory.

Although few GPU-based genome assemblers have been

proposed, they are designed for small error-free simulated

datasets which inherently limits their assembly performance.

Specifically, the largest dataset they have assembled is in a

few tens of gigabytes, which is much smaller than typical

human genome datasets. Given that the high computational

capability of GPUs has not been fully utilized by existing

genome assembly tools, it is crucial to develop a new GPU-

based assembly framework that uses adequate techniques to
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Figure 1. Shotgun sequencing

scale up to the size of real-world human genomes without

requiring large amounts of expensive computing resources.

Several studies have reported that the most challenging

step in genome assembly is building a graph (either a string

graph or de Bruijn graph) from the short reads since it

requires a lot of computing power and a large amount of

memory [15] [16]. To address the fundamental limitation of

GPUs in large-scale genome assembly, we present a new

GPU-accelerated genome assembler, called LaSAGNA, that

can assemble datasets with billions of sequences using a

single GPU by building string graphs from approximate

all-pair overlaps. LaSAGNA significantly reduces the mem-

ory requirement by employing a semi-streaming approach

that minimizes the number of disk accesses based on the

available memory. It can also run on multiple GPUs across

multiple compute nodes to expedite the assembly pipeline.

This paper makes several contributions as follows. 1) We

develop a new genome assembly framework that can build

an approximate overlap graph from a real-world human

genome sequence dataset (several hundred GB in size) using

a single GPU equipped with only 6 GB device memory.

2) We present a two-level streaming model (from disk to

host memory and from host memory to device memory)

that effectively utilizes the memory hierarchy to reduce the

disk I/O in large-scale genome assembly. 3) We implement a

distributed version of LaSAGNA to facilitate faster operation

on a cluster of compute nodes. Given that the assembly

workload is heavily I/O-intensive, LaSAGNA can benefit

from the larger aggregated I/O bandwidth available in dis-

tributed computing. 4) We evaluate LaSAGNA using several

real-world genome sequence datasets to exhibit its efficiency

in various computing environments. Our experimental results

show that LaSAGNA can assemble a 400 GB human genome

dataset in 17 hours using a single GPU (NVIDIA K40).

The rest of the paper is organized as follows. In Section II,

we introduce the preliminaries of the genome assembly

problem followed by a discussion of related literature. Next,

we describe our proposed approach and its distributed imple-

mentation in Section III. Lastly, we show our experimental

results in Section IV and conclude this paper in Section V.

II. BACKGROUND AND RELATED WORK

A. Preliminaries

1) De novo assembly: Genome assembly can be per-

formed either by mapping or de novo. In mapping assembly,

reads are aligned with some reference genome of the same

or a closely related species. On the other hand, in de novo

assembly, the original sequence is obtained by just finding

the overlaps between reads. De novo assembly is performed

using either a de Bruijn graph-based approach [17] or a

string graph-based approach [18]. A de Bruijn graph is

created from all unique k-length substrings of sequences

as vertices, and their (k − 1)-length overlaps as edges.

This method is prone to collapsing repeated regions of the

genome that are larger than k, causing information loss [19].

2) De novo assembly with string graphs: Given a set R
of reads and their Watson Crick (WC) complements, a string

graph G in its simplest form consists of R as vertices and

a set of directed weighted edges E. An edge e = (ri, rj , l),
where ri, rj ∈ R and l ∈ [1,min(|ri|, |rj |)), exists in E if

the l-length suffix of ri matches the l-length prefix of rj .

Naturally, any edge e = (ri, rj , l) ∈ E must also have a

complementary edge e′ = (rj ′, ri′, l), where ri′ is the WC-

complement of ri.
In theory, there exists a tour in G that corresponds to the

original sequence from which R was generated. However,

the graph contains a lot of redundant information in the

form of transitive edges. Specifically, if a read rj overlaps

with rk and read ri overlaps with both rj and rk, then

the edge (ri, rk) can be removed from G without any

information loss. Furthermore, a read that is completely

contained in another one may also be removed. A heuristic

that is often used to prune the graph is a greedy approach,

where only one outgoing edge corresponding to the read

with the longest overlap is considered for assembly, and the

others are ignored [20], [21].

Figure 2. String graph-based assembly

Once the graph is simplified, paths that can be unam-

biguously traversed are spelled out to obtain subsequences

of the original DNA string. These subsequences are known

as contigs. Fig. 2 shows a string graph created from short

reads and the contigs generated by traversing it.

B. Related work

GPU-Euler [22] is the first genome assembler built for

GPUs, followed by GAGM [23], which proposes paired

de Bruijn graph construction and contig generation using

a single GPU. Both assemblers were evaluated using small

simulated error-free reads generated from bacterial genomes.

Another GPU-based de Bruijn graph construction tool [15]

proposes a staged graph construction pipeline and reports its

results on a 13 GB human chromosome dataset. GAMS [19]

is the first string graph-based assembler that uses GPUs and

reports the assembly of a human chromosome using a 16-

node GPU cluster. Some works, such as FAssem [24], have
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studied the application of FPGAs in assembly, but are also

evaluated on small bacterial datasets.

There are many CPU-based assembly tools, and most

of them are based on de Bruijn graphs. Since the ad-

vent of first-generation assemblers such as Velvet [25] and

SOAPdenovo [26], several assemblers, such as Minia [27]

and MEGAHIT [28], have been proposed to use succinct

data structures (e.g., bloom filters) to store large graphs in

memory. Many distributed assemblers have also emerged

to expedite the assembly of high-throughput sequencing

datasets. Notable among them are Ray [29] and SWAP [30]

built on MPI, Lazer [31] which uses ZeroMQ, Contrail [32]

and Giga [33] based on Hadoop, and HipMer [34] based

on the global-address space model. Among the string graph-

based assemblers, SGA [35] is the only one that can process

large datasets on a single node using compressed data

structures. To the best of our knowledge, CloudBrush [36]

is the only distributed string graph-based assembler, but has

only been evaluated on small datasets and is still under

development.

III. METHODOLOGY FOR GPU-ACCELERATED

ASSEMBLY

The most expensive stage in any string graph-based as-

sembler is to find the overlaps between all pairs of reads. In

theory, one can generate all suffixes and prefixes from R, and

create two lists of key-value pairs, S and P , using suffixes

and prefixes respectively as keys and their corresponding

read-IDs (unique identifiers of reads) as values. Next, for

each key-value pair < k, ri > in S, one can add an edge

e = (ri, rj , |k|) in G if < k, rj > exists in P .

Naturally, this is not practical since storing all suffixes (or

prefixes) for an input of size n will require O(n2) space,

where n is the total number of bases in R. The space can be

reduced if the actual suffix (or prefix) is replaced by a tuple

< l, f > where l is the length of the suffix (or prefix) and

f is its fingerprint. Therefore, for each << li, fi >, rj > in

S, we can conclude that an edge exists between rj and rk
with a high probability if P contains << li, fi >, rk >.

However, even with fingerprints, the space requirement

(i.e., O(n log2 q) bits where q is the largest fingerprint

value) is often too large to fit in the main memory. Indeed,

this approach has been attempted [37] but evaluated only

on small simulated low-coverage datasets. This problem

intensifies in case of large high-coverage real datasets where

the reads have a lot of overlaps and require larger fingerprints

to minimize the number of false positive edges.

The situation deteriorates with GPUs since their available

device memories are typically an order of magnitude smaller

than the main memory of even a mid-range workstation. To

address this problem, we present a semi-streaming approach

for building the string graph by conceptually dividing the

memory hierarchy into a read-only memory, a write-only

memory, and a working memory, as depicted in Fig. 3. The

Figure 3. Conceptual view of memory types

read-only memory can only be read sequentially, whereas the

write-only memory can only be written sequentially. Note

that both the read- and write-only memories reside on disks,

but are treated as separate to suggest that a file cannot be

read and written at the same time. The working memory

consists of a slower host memory and a faster device

memory. Unlike the read- and write-only memories, we

allow random accesses in the host memory. However, most

of the computation is done on the faster device memory,

and we minimize the processing done on the host memory.

This two-level streaming model (from disk to host memory

and from host memory to device memory) efficiently utilizes

the memory hierarchy to reduce the amount of disk I/O and

enables large-scale sequence assembly.

Figure 4. Overview of assembly pipeline

Fig. 4 shows the overview of our assembly pipeline

in LaSAGNA consisting of four main phases: map, sort,

reduce, and traverse. We describe each phase in detail below.

A. Map: Generate pairs of fingerprints and read-IDs

In this phase, batches of reads are loaded in the GPU

where their reverse complements are obtained. Next, for

each read and its complement, the fingerprints of all their

prefixes and suffixes are generated using the Rabin Karp’s
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rolling hash. Since short-reads in a sequence dataset are

of similar lengths, the fingerprint generation can be easily

parallelized by assigning each read to a thread. However,

on GPUs, this scheme fails to perform as expected due to

excessive memory throttling, a scenario where threads block

because of numerous pending memory accesses. Moreover,

this scheme does not utilize shared memory.

These issues can be addressed if a block of threads

processes each read in parallel. To do so, we express prefix

fingerprint generation as a Hillis-Steele scan problem. Here,

each batch of reads is processed by a grid of thread blocks

where the number of blocks equals the number of reads

in the batch, and the number of threads per block equals

the read-length. Fig. 5 illustrates the execution of the kernel

used to generate fingerprints of all prefixes of a read whose

length is 10 with some prime modulo (q) and radix (σ). In

practice, the radix is a small prime larger than the alphabet

size, and the prime modulo is a large prime number.

G A T A C C A G T A

3 0 2 0 1 1 0 3 2 0

3 12 2 8 1 5 4 3 1 8

3 12 11 5 7 3 7 5 0 4

3 12 11 5 8 7 2 11 11 5

3 12 11 5 8 7 2 11 7 2

1 4 3 12 9 10 1 4 3 12

40 41 42 43 44 45 46 47 48 49

M

R
E

P

f[n]= (f[n] �
f[n-1]*M[1])%13

f[n]= (f[n] �
f[n-2]*M[2])%13

f[n]= (f[n] �
f[n-4]*M[4])%13

f[n]= (f[n] �
f[n-8]*M[8])%13

Figure 5. The communication and computing pattern during generation
of prefix fingerprints of read GATACCAGTA with radix 4 and prime 13.

Before the kernel is launched, the place values (e.g.,

σ0, σ1) for all positions of the read are computed, and

their remainders after division by the prime number q are

stored in an array M. This step is done once for the entire

program and reused for all reads. In the beginning, each

thread in the grid encodes the corresponding base in the

read (R=GATACCAGTA) to the radix σ (σ = 4) and places

it in its corresponding position in array E. Next, each

thread iteratively adds its element to the product of previous

element (the current offset determines the previous element),

and its place value. The offset starts at one and is doubled

at every step until its length becomes larger than the read

itself. At the end of the algorithm, each position i in the

output array P will store the fingerprint of the prefix ending

at position i (i.e., fingerprint of the prefix of length i + 1).

For example, in Fig. 5, the fingerprints of G, GA, and GAT
are 3, 12, and 11 respectively.

The suffix fingerprints are computed using the place

values (M ) and prefix fingerprints (P ) calculated during the

previous step as shown in Fig. 6. As before, the position

i will now store the fingerprint of the suffix starting from

position i. For instance, in Fig. 6, the fingerprints of GAT-

ACCAGTA and ATACCAGTA are 2 and 5 respectively.

3 12 11 5 8 7 2 11 7 2P

2 36 36 44 5 80 63 24 33 28P’

*M[9] *M[8] *M[7] *M[6] *M[5] *M[4] *M[3] *M[2] *M[1]

2 10 10 5 5 2 11 11 7 2P’

2 5 5 10 10 0 4 4 8 0S

S[i]=
(2+13-P’[i])%13

P’[i]=
P’[i]%13

Figure 6. The communication and computing pattern during generation
of suffix fingerprints, using the prefix fingerprints of the previous step

This scheme reduces the number of memory transactions

and raises the functional unit utilization of GPUs. Moreover,

prefixes and suffixes are processed in a single kernel using

shared memory, thus improving performance and avoiding

scattered writes during suffix fingerprint generation.

Partitioning: To find overlaps between suffixes and pre-

fixes, their lengths (j) and source read-IDs (ri) are appended

to their fingerprints (fij ) to create a set of 3-tuples. Since

we need to find matches between suffixes and prefixes

of the same length, it is logical to partition these tuples

by their length. Therefore, we sort all (fij , ri) pairs by

their corresponding lengths j and count the number of

occurrences of each unique j to obtain the size of each

partition. In other words, the partitioning process converts a

list of (j, fij , ri) tuples to lmax lists of (fij , ri) tuples, where

lmax is the length of the sequences. Out of these lists, the

ones corresponding to a length smaller than a user-defined

minimum overlap-length (lmin) are discarded. Moreover, the

partition belonging to lmax is also dropped to avoid self-

loops in the graph. The remaining ones are written to disk,

each into a file corresponding to the partition.

B. Sort: Sort read-IDs by fingerprints

To enable binary searches of suffixes in a list of prefixes,

in this phase we sort read-IDs by their fingerprints belonging

to each partition corresponding to length li ∈ [lmin, lmax).
Since the number of suffixes/prefixes is much larger than the

GPU memory, we use an external-memory sorting scheme

comprising two phases. In the first phase, chunks of key-

value pairs (of size M such that M elements fit in GPU

memory) are read from disk, sorted by keys, and written

back to disk. In the next phase, these chunks are iteratively

merged into a single sorted one.
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Note that the size of the chunks being merged will double

every iteration, and hence the merging must also be done

using external-memory. Algorithm 1 explains our approach

to combine two sorted lists on disk, by processing at least

M/2 and at most M elements at a time. It is adapted from

the k-way merging scheme and operates under the guiding

principle that the input cannot be randomly accessed.

Algorithm 1 External memory merging

Input: A sorted list kvlA of key-value pairs.
Input: A sorted list kvlB of key-value pairs.
Input: A count M of key-value pairs that fit in memory
Output: kvlA and kvlB are merged into sorted list kvlC

1: procedure MERGE(kvlA, kvlB)
2: repeat
3: A← next M/2 key-value pairs from kvlA
4: B ← next M/2 key-value pairs from kvlB
5: if A ≺ B then kvlC ← A
6: else if B ≺ A then kvlC ← B
7: else
8: k ← MIN KEY(AM/2, BM/2)
9: if k = AM/2 then

10: rank ← UPPER BOUND(k,B)
11: RESIZE(B, rank)
12: else
13: rank ← UPPER BOUND(k,A)
14: RESIZE(A, rank)
15: end if
16: kvlC ← GPU MERGE(A,B)
17: end if
18: until one of the lists is empty
19: kvlC ← any remaining elements from A or B
20: return kvlC
21: end procedure

The merge algorithm consumes two sorted lists of key-

value pairs (kvlA, kvlB) and emits a single sorted list

(kvlC). We slide windows of size M/2 on both lists (lines

3, 4) and read chunks of data from both. If either of the

windows reaches the end of the list, the function copies the

remaining elements of the other list to the output (line 19)

and finishes. Otherwise, when the largest key in one chunk

is not larger than the smallest key in the other, all items in

the smaller chunk are appended to the output (lines 5, 6). On

the other hand, if the chunks cannot be ordered entirely, we

resize the windows in a way that the largest key within the

current pair of windows is not larger than the smallest key

in the subsequent ones. This is done by finding the upper-

bound of the smaller of the last keys in both chunks, in the

chunk containing the larger of those two keys.

The upper-bound of a key k in a sorted array A is the

index i such that A[j] ≤ k, ∀j < i and A[j] > k,∀j >
i. This can be easily obtained with a binary search in the

host memory (lines 8 to 15). Note that this step is only

required if the last elements in both windows are unequal,

but this check is omitted from the pseudo-code for brevity.

After the windows are equalized, the pairs in A and B are

copied to device memory where they are merged by keys

and appended to the output (line 16).

Algorithm 1 takes O(r/md) iterations where r is the

number of keys to be merged, and md is the maximum

number of elements that fit in the device memory. Since each

iteration performs radix sorting in O(md) [38], Algorithm 1

has time complexity O(r).
Sorting in hybrid-memory: To reduce the number of disk

passes during this phase, we use host memory as a buffer

between the disk and device memory. This hybrid-memory

sort procedure works exactly as before, but in two levels.

In the top level, it reads large chunks of size mh (such

that mh key-value pairs fit in host memory) from disk to

host memory, sorts them, and writes them back to disk.

Next, these large sorted blocks are streamed from disk and

iteratively merged (like Algorithm 1, but in host memory)

in batches of mh/2 elements per block, until a single sorted

block remains.

Underneath the top level, the sorting and merging of

large blocks in host memory are done by streaming them

in smaller chunks of md to device memory and sorting and

merging them on the GPU. This makes up the second level of

the scheme. With this optimization, even though the number

of merge passes in device remains the same, the number of

disk passes can be reduced to 1+log(n/mh), or by a factor

of log(mh/md), which is typically about 3-4 times.

C. Reduce: Find suffix-prefix matches

This phase consumes two lists Sl and Pl containing tuples

of the read-IDs and fingerprints of their l-length suffixes

and prefixes respectively, both sorted by fingerprints. For

each read-ID in Sl, it searches Pl for read-IDs having the

same fingerprint, and adds an edge to the string graph for

each matching read-ID. Having sorted lists enables us to

stream two windows WS and WP from suffixes and prefixes

respectively, such that they fit in memory and a fingerprint

present in WS cannot be present in any window except WP .

Therefore, we can process each partition with a single disk

pass. We repeat this process for all pairs of Si and Pi for

each i ∈ [lmax, lmin).
Algorithm 2 shows the pseudo-code of the approach

described above. We stream data from the list of suffixes

and prefixes into host memory with at most M/2 key-value

pairs per window (lines 3 and 4). Next, we find the smaller of

the largest fingerprints from either window (f ) and calculate

the lower-bound of f in both the windows. The lower-bound

of a key k in a sorted array A is the index i such that

A[j] < k, ∀j < i and A[j] ≥ k, ∀j > i. Based on the lower-

bound values, we resize both windows (lines 6 and 7) to

contain the same range of fingerprints.

Once the windows are resized, we obtain the number of

occurrences of each suffix fingerprint in the prefix window.

Note that, by the definition of upper- and lower-bounds, if

a sorted array A contains p consecutive occurrences of an
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Algorithm 2 Overlap detection

Input: A sorted list kvlsfx of suffix-fingerprints & read-IDs
Input: A sorted list kvlpfx of prefix-fingerprints & read-IDs
Input: A count M of key-value pairs that fit in memory
Input: A string graph G
Output: Updated string graph G

1: procedure REDUCE(kvlsfx, kvlpfx)
2: repeat
3: S ← next M/2 key-value pairs from kvlsfx
4: P ← next M/2 key-value pairs from kvlpfx
5: f ← MIN KEY(SM/2, PM/2)
6: RESIZE(S, LOWER BOUND(f, S))
7: RESIZE(P, LOWER BOUND(f, P ))
8: L← GPU VEC LOWER BOUND(S, P )
9: U ← GPU VEC UPPER BOUND(S, P )

10: C ← GPU VEC DIFFERENCE(U,L)
11: for rsi ∈ S do
12: if ci ∈ C > 0 then
13: for j ∈ [Li, Li + ci) do
14: G← (rsi , rpj ), rpj ∈ P
15: end for
16: end if
17: end for
18: until one of the lists is empty
19: return G
20: end procedure

item k starting at index i, the lower-bound of k in A is

i, and its upper-bound is i + p. On the other hand, if k
is not present in A, there must exist an index j such that

A[j] < k < A[j+1] and, both the upper- and lower-bounds

are j. Thus, the number of occurrences of an element in a

sorted array is the difference between its upper- and lower-

bound in the array. If the difference is non-zero, the lower-

bound yields the position of its first occurrence in the array.
Therefore, we load both the suffix and prefix windows

in the GPU and calculate the upper-bound (U ) and lower-

bound (L) of each suffix fingerprint in the array of prefix

fingerprints and the difference (C) between them (lines 8 -

10). We then iterate through C and, for all i such that ci >
0, ci ∈ C, we create an edge from the vertex corresponding

to the read with suffix si ∈ S to that with prefix pj ∈ P for

j ∈ [Li, Ui).
Our approach of building the graph is greedy, so each

vertex (read-ID) will have at most one incoming edge and

at most one outgoing edge. We maintain a bit-vector to store

the out-degree information of all vertices. Upon receiving a

request to add a candidate edge (u, v, l), l ∈ [lmin, lmax),
we check the bit-vector to find out if either the vertex u or

v′ (WC complement of v) has an outgoing edge, and if so,

discards the edge. If both vertices have no outgoing edge,

we add edges (u, v, l) and (v′, u′, l) to the graph and update

the bit-vector.
Note that the graph is built in the host instead of the

GPU since for large datasets it can easily exceed the device

memory. For instance, the graph of a human genome with

2.5 billion edges, each containing a 4-byte vertex-ID and

a 1-byte overlap length, takes about 12 GB of memory.

Besides, due to of the nature of string graphs, adding an edge

(u, v) to a graph that is being updated by multiple threads

involves acquiring locks for u and v′. We have observed

(using CUDA’s native atomics library) that such an approach

detrimentally influences the performance when implemented

in GPUs.

Like Algorithm 1, Algorithm 2 takes O(r/md) iterations

where r is the number of reads, and md is the maximum

number of elements that can be stored in the device memory.

Moreover, the amortized time complexity of each iteration

is O(md logmd/p + md × cavg) where p is the number

of processors for the vectorized upper- and lower-bound

calculation and cavg is the average number of overlaps per

read. Since logmd < p in practice (e.g., NVIDIA P100

has 16 GB memory and 3,584 cores), Algorithm 2 has time

complexity O(r + C) where C is the number of overlaps

between reads.

D. Compress: Traverse paths and generate contigs

This phase consists of two stages. In the first stage, we

traverse the string graph to obtain a set of paths, where each

path pi is represented as a sequence of tuples, and each tuple

consists of a read-ID (rij ) and its overhang-length (lij ). The

overhang-length of a read ru having an overlap with another

read rv is defined as (lu − ouv) where lu is the length of

ru and ouv is the overlap between ru and rv . Since a vertex

in our string graph can have at most one outgoing edge, a

read can only have a single overhang-length. Reads having

no overlap with others have overhang-lengths equal to their

lengths.

Traversal begins with vertices with in-degree 0 and out-

degree 1 as seeds. Next, from each seed, we continue to

extend the path by appending the read-ID and overhang-

length of the current vertex to the sequence of tuples,

and stop after we encounter a vertex with no outgoing

edge. Since the graph resides in host memory, this stage is

performed using multiple threads in the host. However, even

for our largest test dataset (i.e., real-world human genome), it

takes less than a minute to obtain the paths in host memory,

so its effect is insignificant.

In the second stage, we convert read-IDs belonging to

the paths in the string graph to their corresponding input

sequences to generate contiguous sections (contigs) of the

original DNA sequence. This is done by laying out the

overhang-lengths of paths in order of their read-IDs, stream-

ing the original reads, and placing their overhangs in their

appropriate offsets.

Fig. 7 shows the process in greater detail. For any path

pi in the list of paths P , let its length li be defined as the

number of (rij , lij ) pairs in it. We load P to GPU and,

for each pi ∈ P , we calculate its offset oi within P using

an exclusive prefix-scan operation. Next, for all reads rij in

path pi, we perform another scan of their overhang-lengths
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Figure 7. Generating contigs from paths in string graph

lij to obtain the size of memory required to store the contig

corresponding to pi, as well as the offset oij of each read

in the set of all contigs.
Since a vertex has at most one incoming and one outgoing

edge, a read can belong to at most one path. Hence,

each overhang-offset tuple is copied to the unique location

corresponding to its read-ID with a gather operation in GPU

(i.e., using the array of read-IDs as a stencil). Finally, short-

reads are streamed from disk and, for each read ri, we

place the substring ri[1 · · · lri ] into offset ori in the memory

allocated for contigs. This concludes our contig generation

phase.

E. Distributed Graph Building Over Multiple Compute

Nodes

Among all phases in the pipeline, sorting takes the longest

(more than 50% of the total execution time), closely fol-

lowed by fingerprint generation (about 25% of the total

time). Since fingerprints can be independently generated for

each sequence, and each partition is separately sorted, these

phases can be distributed across multiple GPUs. However,

we have observed that the most prominent bottleneck in the

pipeline is the I/O throughput. To mitigate this, we distribute

the computation across multiple nodes for exploiting a

higher aggregate I/O bandwidth.
The distributed implementation of LaSAGNA assumes the

presence of a distributed file system that stores the input

sequences and the output graph. Each node also has access

to private storage for shuffling and sorting intermediate data.

The storage can be located in a network-mounted file system,

but must not be shared across nodes since the bulk of the

I/O is performed here. In practice, LaSAGNA will benefit

from the use of local disks and faster media such as solid-

state drives. GASNet 1 active messaging library handles the

remote spawning of processes and subsequent communi-

cations. Each node runs a process that communicates and

synchronizes with peers and calls CUDA functions. One

of the peers is chosen as a master and charged with load

balancing.

1https://gasnet.lbl.gov/

1) Map: In the map phase, each node (including the

master itself) requests the master for the address of an

input block. It then processes the sequences in the blocks,

generates (fingerprint, read-ID) tuples, and writes them into

local disk. Like the single-node implementation, the tuples

are split into partitions based on the length of suffixes and

prefixes, and each partition is maintained in a separate file.

2) Shuffle and sort: Each node works on separate parti-

tions and must aggregate the data assigned to it from other

peers before sorting. To do this, each node sends a sequence

of active messages to its peers. On reaching the destination,

a message reads from the file corresponding to the partition

requested and responds with a chunk of data.

3) Reduce: Since edges are added to the graph in de-

scending order of their lengths, and (fingerprint, read-ID)

pairs are also partitioned by lengths, a node reducing parti-

tion pi with i-length suffixes/prefixes must wait for the node

reducing pi+1 to finish. Even with a different partitioning

scheme, if multiple nodes greedily update a graph in parallel,

it would not be scalable since adding an edge (u, v) needs

locks on both u and v, which may reside on different nodes.

Nonetheless, some scalability can still be attained using the

observation that most of the execution time is spent on

reading the suffixes and prefixes from disk and finding the

overlaps between them, whereas adding edges is relatively

much faster.

We apply this insight to distribute the reduce phase as

follows. Each node in charge of a set of partitions processes

them in descending order of their corresponding lengths.

There exists a bit-vector v that stores the number of out-

going edges of all vertices and initially resides inside the

node containing partition Plmax−1 corresponding to length

lmax − 1. Upon obtaining the set of suffix-prefix overlaps

for partition pi, a node waits until it receives v from the

node in charge of pi+1. On arrival of v, the node then uses

it to create greedy edges from overlaps and forwards v to

the node processing pi−1.

Note that this scheme avoids storing the entire graph in

a globally accessible data structure. Instead, it is stored as

disjoint sets of edges, and the sets are distributed among

the different nodes. On the downside, however, if to is the

average time spent to find overlaps, and tg is the average

time spent to build the graph (and to send the bit-vector to

the next node), the expected total time to finish processing

p partitions using an n-node cluster is to×p/n+tg×p. The

scalability of this phase is therefore limited to nmax = to/tg
nodes, after which the graph building step dominates the

computation time.

IV. EVALUATION

In this section, we report the experimental results of

LaSAGNA for various real-world sequence datasets across

multiple computing environments.
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A. Datasets

Table I shows the datasets used in the evaluation of

LaSAGNA. All datasets used were obtained from Illumina

sequencing machines, and the longest sequence length varies

from 100 to 150 base pairs. The minimum overlap lengths

used to build the string graphs are 63 for H.Chr 14 and

H.Genome (lengths of 101 and 100 respectively), 85 for

Bumblebee (length of 124), and 111 for Parakeet (length of

150), as suggested by the SGA assembler.

Table I
ILLUMINA DATASETS USED FOR EVALUATION

Dataset Length Reads Bases Size

H.Chr 14 [39] 101 45,711,162 4,559,613,772 9.2 GB
Bumblebee [39] 124 316,172,570 33,562,702,234 85 GB

Parakeet2 150 608,709,922 91,306,488,300 203 GB

H.Genome3 100 1,247,518,392 124,751,839,200 398 GB

B. Testbeds and Implementation

To evaluate LaSAGNA, we use three types of computing

environments. On QueenBee II4 cluster, we use a node

with two NVIDIA Tesla K40 GPUs, two 10-core 2.8 GHz

E5-2680v2 Xeon processors, and 128 GB main memory.

We use only one GPU for our evaluation. On SuperMic5

cluster, we use a node with one NVIDIA Tesla K20X GPU,

two 10-Core 2.8GHz Ivy E5-2680 Xeon processors, and 64

GB main memory. For evaluating the distributed version of

LaSAGNA, we use multiple nodes of this type, connected

by 56 Gb/s InfiniBand. On NVIDIA PSG6 cluster, we use

three types of nodes, each equipped with NVIDIA V100,

P100, or P40 GPUs. Each node has two 16-core Haswell E5-

2698v3 processors and 256 GB main memory. Even though

this cluster provides several high-end GPUs, we could not

use them for the entire assembly pipeline because of the

limited disk space per account.

LaSAGNA uses 128-bit fingerprints (two 64-bit values

generated with different radixes and primes) since we have

observed that it yields zero false positive edges across all the

datasets that we have tested. LaSAGNA is built primarily

with the programming primitives and data structures pro-

vided by NVIDIA’s Thrust 7 library included with CUDA

7.5 toolkit.

C. Single-GPU Genome Assembly

1) Genome Assembly Times: Table II and Table III show

the total assembly times with details of each phase for

different datasets on a QueenBee II node (128 GB host

memory and one NVIDIA K40 with 12 GB device memory)

2https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=ERP002324
3http://www.ncbi.nlm.nih.gov/sra/?term=SRA000271
4http://www.hpc.lsu.edu/resources/hpc/system.php?system=QB2
5http://www.hpc.lsu.edu/resources/hpc/system.php?system=SuperMIC
6http://psgcluster.nvidia.com/
7https://developer.nvidia.com/thrust

and on a SuperMic node (64 GB host memory and one

NVIDIA K20X with 6 GB device memory) respectively.

The results demonstrate that LaSAGNA can finish the entire

genome assembly pipeline for a 398 GB human genome

dataset within 16.5 hours using a single GPU (NVIDIA

K40). To the best of our knowledge, this is the first GPU-

based assembler that can assemble a real-world human

genome dataset on a single node.

Table II
SINGLE NODE ASSEMBLY TIMES ON 128GB HOST MEMORY AND 12GB

DEVICE MEMORY (K40)

H.Chr 14 Bumblebee Parakeet H.Genome

Map 5m 32s 33m 20s 1h 40m 58s 2h 43m 15s
Sort 9m 36s 1h 21m 0s 4h 57m 56s 11h 05m 45s
Reduce 4m 47s 26m 6s 1h 17m 31s 2h 20m 33s
Compress 6s 20s 26s 57s
Load 25s 3m 9s 5m 57s 10m 39s

Total 20m 26s 2h 23m 55s 8h 2m 48s 16h 21m 09s

Table III
SINGLE NODE ASSEMBLY TIMES ON 64GB HOST MEMORY AND 6GB

DEVICE MEMORY (K20)

H.Chr 14 Bumblebee Parakeet H.Genome

Map 5m 59s 36m 8s 1h 47m 58s 2h 50m 28s
Sort 11m 12s 1h 35m 25s 5h 41m 23s 14h 53m 21s
Reduce 4m 26s 27m 35s 1h 14m 13s 2h 31m 43s
Compress 5s 19s 26s 56s
Load 23s 2m 51s 5m 31s 11m 48s

Total 22m 5s 2h 42m 18s 8h 49m 31s 20h 28m 16s

Even with a smaller host and device memory (64 GB and

6 GB respectively), LaSAGNA can assemble the H.Genome

dataset in 20.5 hours. Note that the execution times increase

only slightly for all other datasets except H.Genome. This

is because, for H.Genome, a host with 128 GB memory can

sort an entire partition (2.5B keys) in a single disk pass, but

one with 64 GB memory needs to merge two sorted lists with

an additional disk pass. The run-times of the other phases

are similar on both machines because LaSAGNA performs

the same amount of I/O.

2) Memory usage: Table IV shows the peak host and

device memory usage during the various phases of assembly

for different datasets on a QueenBee II node with 128 GB

host memory and one NVIDIA K40 with 12 GB device

memory. Table V shows the results when we run on a

SuperMic node with 64 GB host memory and one NVIDIA

K20 with 6 GB device memory. In both cases, the device

memory usage is almost identical for all datasets because

a fixed amount of device memory is allocated for each

phase regardless of the data size, and the device memory

assigned is fully utilized except for H.Chr 14 on K40.

On the other hand, the host memory usage exhibits wide

variations depending on the dataset because we maximize

the host memory usage. Note that, during the sorting phase
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Table IV
PEAK MEMORY USAGE (IN GB) ON 128 GB HOST WITH K40

Dataset
Peak Host Memory Peak Device Memory

Map Sort Red. Contig Map Sort Reduce

H.Chr 14 14.48 14.92 16.87 16.78 10.74 6.46 4.89
Bumblebee 14.64 34.40 19.55 22.14 10.74 9.02 4.92
Parakeet 16.82 59.21 28.64 28.39 10.73 9.02 4.92
H.Genome 16.39 103.73 38.11 44.24 10.73 9.02 4.92

Table V
PEAK MEMORY USAGE (IN GB) ON 64 GB HOST WITH K20

Dataset
Peak Host Memory Peak Device Memory

Map Sort Red. Contig Map Sort Reduce

H.Chr 14 7.23 9.71 8.99 9.01 5.41 4.54 2.47
Bumblebee 9.03 30.04 13.34 18.14 5.41 4.54 2.50
Parakeet 8.84 54.20 19.48 22.79 5.40 4.54 2.50
H.Genome 9.18 54.66 31.31 38.95 5.40 4.54 2.50

of H.Genome on 128 GB RAM, the maximum available

memory is used to minimize the number of disk passes al-

though LaSAGNA succeeds even on 64 GB RAM. The host

memory used during the contig generation phase depends

on the size of the graph and contigs.

3) Performance Comparisons: Table VI compares the

assembly times (in seconds) of LaSAGNA with those of

SGA (version 0.10.15), the representative string graph-based

assembler. We choose SGA since, to the best of our knowl-

edge, it is the only string graph-based assembler that can

handle large datasets on a single node. We do not include

the results of de Bruijn graph-based assemblers because most

of them are not designed for processing large datasets on a

single machine (i.e., failed with out-of-memory error). The

SGA pipeline consists of multiple phases including error

correction, but for fair comparisons, we only consider the

preprocess, index, and overlap phases. We built the index

with the ropebwt algorithm, which is faster and takes a

smaller amount of memory. Our results demonstrate that

LaSAGNA is 1.89x-3.05x faster than SGA while also being

more memory-efficient due to a better utilization of the

memory hierarchy.

Table VI
COMPARISON BETWEEN SGA AND LASAGNA

Dataset
SGA LaSAGNA

64 GB 128 GB 64 GB 128 GB

H.Chr 14 3081s 3039s 1325s (2.33×) 1226s (2.48×)

Bumblebee 26360s 23958s 9738s (2.71×) 8635s (2.77×)

Parakeet 93747s 88229s 31771s (2.95×) 28968s (3.05×)

H.Genome OOM 111024 73696s 58869s (1.89×)

4) Effects of Host and Device Memory Sizes in Sorting:

We also study the effects of host and device memory sizes

on the sorting phase, the most time-consuming task in our

assembly pipeline. For these experiments, we use the data

generated from H.Genome, containing about 2.5 billion pairs

of 128-bit keys and 32-bit values per partition. We use the

term block-size to denote the number of key-value pairs in a

block. Fig. 8 shows the effects of using different block-sizes

in host and device on the average sorting time per partition

on an NVIDIA K40 GPU. It shows that increasing the device

block-size decreases the execution time since it reduces the

number of merge passes on the GPU. More importantly, it

shows that the effect of device block-sizes is small compared

to that of host block-sizes. The significant performance

improvement with a larger host block-size (because of fewer

disk passes) indicates that the I/O is the most critical factor

in sorting. Note that, since the sorting can be performed in a

single disk pass with a host block-size of 2.56 billion, we do

not expect any performance improvement beyond this point.
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Figure 8. Effects of different host and device block-sizes

5) Effects of Different GPUs: Fig. 9 shows the average

sorting times for various host block-sizes with a fixed device

block-size of 20 million on different GPUs (K40, P40,

P100, and V100). Increasing the host block-size results in

a logarithmic decrease in the execution time until it reaches

2.56 billion. V100, NVIDIA’s latest high-end GPU, is the

fastest since it has much more CUDA cores (5,120) at higher

GPU Boost clock rate (1530 MHz), and provides the highest

peak memory bandwidth (900 GB/sec). Interestingly, P40 is

consistently slower than P100 even though P40 has a larger

device memory (24 GB vs. 16 GB) and more cores (3840

vs. 3584). This is because P40 has much smaller memory

bandwidth than P100 (346 GB/s vs. 732 GB/s).

Another interesting observation is that, as the host block-

size decreases (increasing the number of disk passes), the

performances of the different GPUs appear to converge since

the sorting phase increasingly becomes more I/O bound.

This reinforces the efficacy of our hybrid-memory model

in saturating GPU performance during the sorting phase.

We also argue that the hybrid-memory model can apply to

other types of workloads (e.g., MapReduce-like processing)

that require sorting since we can process large-scale datasets

for such workloads on a single GPU (or a few GPUs) in a

scalable and efficient manner.
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D. Distributed Execution Times

To evaluate the scalability of LaSAGNA, we report the

execution times of the different phases by varying the

number of compute nodes from 1 to 8 on the SuperMic

cluster, as shown in Fig. 10. The results show that LaSAGNA

can assemble a 398 GB human genome dataset in a little over

5 hours on an 8-node cluster of NVIDIA K20s. LaSAGNA

performs better with more nodes because of the distribution

of data and computations during the map phase, and the

larger aggregated I/O bandwidth during the sort phase.
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Figure 10. Execution times on different node configurations

However, LaSAGNA does not demonstrate the optimal

scalability because scaling out from a single node intro-

duces the additional overhead of an all-to-all data transfer

before the sorting phase, as shown in Fig. 10. Moreover,

as previously explained, the data dependency among GPUs

in the graph-building stage of the reduce phase limits the

scalability of the current implementation. To resolve this, are

working on partitioning the suffixes/prefixes based on their

fingerprints rather than on lengths. We also plan on process-

ing the string graph in parallel using a bulk-synchronous

processing model. We leave further optimizations to the

shuffle and reduce phases as our future work.

V. CONCLUSION

In this paper, we have presented LaSAGNA, a new GPU-

accelerated genome assembler, that can assemble large-

scale sequence datasets on a single GPU by constructing

string graphs from approximate overlaps using fingerprints.

Our approach uses a two-level semi-streaming model that

exploits the speed of GPU device memory as well as the

large capacity of host memory. Our experimental results

demonstrate that LaSAGNA can assemble a 400 GB human

genome dataset in 17 hours using a single GPU (NVIDIA

K40). In a distributed setting, LaSAGNA can finish the

entire genome assembly pipeline for the dataset in a little

over 5 hours using an 8-node cluster. To the best of our

knowledge, LaSAGNA is the first GPU-based assembler that

can assemble a real human genome dataset on a single node.
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