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Abstract—Recent advances in big data and deep learning
technologies have enabled researchers across many disciplines
to gain new insight into large and complex data. For example,
deep neural networks are being widely used to analyze various
types of data including images, videos, texts, and time-series data.
In another example, various disciplines such as sociology, social
work, and criminology are analyzing crowd-sourced and online
social network data using big data technologies to gain new
insight from a plethora of data. Even though many different types
of data are being generated and analyzed in various domains,
the development of distributed city-level cyberinfrastructure for
effectively integrating such data to generate more value and gain
insights is still not well-addressed in the research literature. In
this paper, we present our current efforts and ultimate vision
to build distributed cyberinfrastructure which integrates big
data and deep learning technologies with a variety of data for
enhancing public safety and livability in cites. We also introduce
several methodologies and applications that we are developing
on top of the cyberinfrastructure to support diverse community
stakeholders in cities.

I. INTRODUCTION

According to a report published in 2016 by the United

Nations, about 60% of the global population will live in cities

by 2030, and about half of them will live in cities with half

a million inhabitants or more [1]. An overwhelming portion

of the urban population lives in mega-cities, which have a

population of 10 million or more. As cities continue to grow,

access to essential services such as health care, education,

housing, transportation, and law enforcement becomes increas-

ingly challenging. In particular, crime and traffic congestion

become common and critical issues in many large cities. As the

size of city population increases, the rates of violent crime and

the traffic congestion index have soared while overall crime

rates remain similar compared to previous years [2].

As the population of modern cities increases, the cities

start to generate huge amounts of data from diverse sources

such as IoT (Internet of Things) sensors, remote cameras,

social media (e.g., Twitter), crowd-sourcing platforms (e.g.,

Waze), and interactive kiosks. These heterogeneous data are

then shared and analyzed for better governance and efficient

resource utilization for communities. Management and analy-

sis of such a huge volume of structured and unstructured data

requires not only cutting-edge hardware running state-of-the-

art big data frameworks but also machine learning and artificial

intelligence tools that are at the forefront of innovation.

For example, Chicago Mayor’s Office and the Chicago Po-

lice Department (CPD) deployed new predictive technologies

and analytical tools to reduce gun violence. After deploying

a predictive platform equipped with integrated, geographic-

specific, real-time analytics for crime data, video surveillance,

and gunshot detection, one district in Chicago saw a nearly

60% reduction in the number of shooting incidents [3]. Such

new data and technologies will drive modern cities into smart

environments by enhancing public safety and livability of

residents.

Among the new technologies, deep learning is one of the

newest and fastest growing classes of new techniques, which

has been under active development since its resurgence in

2006 [4]. Backed by the advancements in specialized hardware

accelerators, deep learning has enabled various fields of study

to analyze textual, multimedia, or network data, as well as

gain more insights from such complex data. Although these

fields are still being actively investigated by adopting the latest

technologies, most current research efforts focus on individual

problems, lacking a holistic and integrative approach.

While the transformation driven by new data and tech-

nologies reveals great promises, there still exist significant

challenges to address for achieving improved well-being and

prosperity in societies. One of the ways to tackle the chal-

lenges of a smart city is to integrate and understand informa-

tion generated from different sources in a more holistic fash-

ion. Furthermore, since deep learning models are extremely

compute-intensive to train and data-intensive to run inferences

on streaming videos and texts, we need an environment

which juxtaposes big data technologies with traditional high-

performance computing (HPC) augmented by state-of-the-art

hardware accelerators.

In this paper, we present our current efforts and ultimate
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Fig. 1: An overview of our cyberinfrastructure.

vision to build distributed cyberinfrastructure that integrates

big data and deep learning technologies with a variety of

data for enhancing public safety and livability in cites. We

also introduce several techniques and applications that we are

developing on top of the cyberinfrastructure to support various

community stakeholders in cities.

The rest of the paper is organized as follows. In Section II,

we introduce an overview of our cyberinfrastructure which

consists of multiple layers and components. Next, we describe

our methodologies in Section III and applications that we are

developing on top of the cyberinfrastructure in Section IV.

Lastly, we conclude with our future research directions in

Section V.

II. CYBERINFRASTRUCTURE OVERVIEW

The architecture of our cyberinfrastructure consists of four

layers as shown in Fig. 1. The data layer has multiple types

of structured and unstructured raw data which we analyze,

annotate, and index for data mining and visualization purposes.

The data types include traffic and surveillance videos, crowd-

sourced traffic reports, social network data, and publicly-

available city data (e.g., crimes, traffic, emergency calls).

The hardware layer consists of components for gathering

our raw data, training and running our analytical models,

and storing transformed data for future analysis. This layer

includes edge devices which are equipped with sensors and

cameras, temporary storage servers for raw data, analysis

servers for training and running our models, and long-term

storage servers for annotated data. The software layer consists

of software tools and frameworks which we use to manage and

analyze our stored data. This layer combines big data tools for

streaming and storing huge amounts of raw data, deep learning

frameworks to train models and run inferences for annotating

the raw data, and visualization tools. Lastly, the application

layer includes our real-world applications and services which

we are building and planning to develop for the smart city

initiatives. The bottom three layers are described in detail in

the following subsections while we introduce the application

layer in Section IV.

Fig. 2: DOTD cameras in interstate highways around Baton

Rouge area.

A. Data Layer

Our cyberinfrastructure is designed to collect and manage

heterogeneous types of data generated from various devices

and domains. We currently focus on four types including

videos, social network data, publicly-available city data, and

law enforcement data.

1) Traffic and Surveillance Videos: Our cyberinfrastructure

receives live video feeds from cameras of the Louisiana

Department of Transportation and Development (DOTD) and

the City of Baton Rouge for conducting real-time traffic

and public safety analyses, as well as for performing data

transformation for future data analyses. The DOTD cameras

are installed along the major interstate highways in Louisiana

covering several big and mid-sized cities including New

Orleans, Baton Rouge, Houma, Shreveport, Lafayette, North

Shore, Lake Charles, Monroe, and Alexandria. By connecting

to the DOTD network, our cyberinfrastructure can access more

than 200 cameras, which constantly provide live feeds from

the highways across the state of Louisiana. Fig. 2 shows the

locations of the DOTD cameras in Baton Rouge, the capital

city of Louisiana.

2) Online Social Networks and Crowd-Sourced Traffic Re-
ports: Online social networks, such as Twitter and Facebook,

provide invaluable information not only for scientists in aca-

demic disciplines but also for government officials in law

enforcement and homeland security fields. Using a cluster of

machines, our cyberinfrastructure collects tweets via Twitter

API based on specific keywords and geospatial coordinates.

Users can easily add new keywords and locations to gather

tweets of interest. Moreover, through a collaboration with

social, environmental, and political scientists, our cyberinfras-

tructure stores comprehensive tweet datasets for some major

natural disasters. In addition to online social network data, our

cyberinfrastructure collects data from Waze, the world’s largest

crowdsourcing-based traffic and navigation application, to help

city officials make better decisions in terms of the city traffic

management and emergency responses. Through the Waze’s

Connected Citizens Program (CCP), we store and analyze

real-time traffic information including system-generated traffic

jams and user-reported traffic incidents.
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Fig. 3: The proposed video analysis pipeline dividing compu-

tation into multiple steps (Edge, Fog, Server, and Cloud) to

provide fast and distributed analysis.

3) Publicly-available City Data: Open data for cities has

become an important trend for improved transparency and

potentially transformative data analytics [5]. The city of Baton

Rouge, with which we are collaborating to build a smarter city,

provides the data. This ’open’ data is comprised of, among

others, public safety information (e.g., crime incidents, fire

incidents, medical clinics), housing and development informa-

tion (e.g., census demographics, building permits), government

information (e.g., citizen requests for services, public facilities,

purchase orders), and transportation and infrastructure infor-

mation (e.g., traffic incidents, potholes, traffic signals). As new

types of data become available, those will also be incorporated

into the process.
4) Law Enforcement Data: In addition to the publicly-

available data, our cyberinfrastructure analyzes law enforce-

ment data which may include sensitive information. A memo-

randum of understanding between Louisiana State University

(LSU) and law enforcement agencies in Baton Rouge has al-

lowed monthly transfer of individual-level violent crime data,

including data on homicides, robberies, aggravated assaults,

and illegal use of a weapon, from law enforcement agencies.

This data is provided every month, and it includes incident re-

port numbers, offense description, Louisiana criminal offense

code, report address, offense district, date and time of the

offense, law enforcement agency responsible for the report,

and the names and demographic information on all persons

involved (both victims and suspects) including home address

and role in the incident. The crime data are uploaded to a

secure web server in the LSU campus through a unique URL

address by agencies on the first day of each month. Files

uploaded to the secure web server are deleted after 90 days.

B. Hardware Layer

1) Computing: Our cyberinfrastructure is based on a fog

computing model consisting of four tiers as shown in Fig. 3.

The lowest tier is made up of edge devices, such as smart-

phones and Raspberry PIs (credit card-sized computers), that

are responsible for collecting data from sensors and cameras

and sending them upstream. Since these edge devices possess

network connectivity and usually contain limited computation

power and storage capacity, they can be used to perform

elementary data filtering to reduce network communication

to the higher tiers. They also act as buffers when transferring

data from stateless devices to long-term storage servers in the

cloud.

The next tier consists of fog nodes that are embedded

devices such as NVIDIA Jetson. Each of these devices is

responsible for aggregating data from a set of edge devices

and sending them upstream for further analysis and storage.

Since fog nodes are more powerful than edge devices, they

can perform more advanced operations on the raw data. For

example, we utilize fog nodes to run inferences using the first

few layers of a deep learning model. When the fog nodes

are confident about their inference results, only the annotated

data is sent upstream for long-term storage and data mining.

Otherwise, the raw data is sent upstream for further analysis.

The third tier includes analysis servers that are standalone

nodes with modest to high processing power and in charge

of handling compute-intensive tasks such as training deep

learning models and running inferences on raw data using all

layers of the trained model. Each analysis server handles a

set of fog nodes and receives data from them in one of two

forms: 1) the raw data when the fog nodes are not confident

about their preprocessing results and 2) the data annotated by

the fog nodes. After analysis on the analysis servers, the data

is sent upstream for further processing.

The top tier is a federated cloud that consists of public cloud

services (e.g., Amazon Web Services, Microsoft Azure, IBM

Cloud) and open research infrastructures (e.g., GENI (Global

Environment for Network Innovations), XSEDE (Extreme

Science and Engineering Discovery Environment), Emulab).

This tier fetches annotated data from analysis servers and

stores it in distributed file systems (or database systems) for

large-scale data mining and visualization.

2) Storage: The federated cloud in the top tier of our cy-

berinfrastructure contains short- and long-term storage subsys-

tems in the public clouds as well as HPC data centers. These

subsystems can be in the form of a distributed file system

(e.g., Lustre, Hadoop Distributed File System (HDFS)) or a

distributed NoSQL database system (e.g., HBase, MongoDB).

3) Networking: The federated cloud in the top tier of our

cyberinfrastructure is connected to the other three tiers by

Internet2, a member-owned nationwide high-speed network

backbone consisting of educational and research institutions,

government agencies, and leading corporations. Moreover, the

three bottom tiers are interconnected by high-speed regional

networks such as Louisiana Optical Network Infrastructure

(LONI), which is available for use by academic, government,

and industry partners in collaboration with LONI participant

institutions.

C. Software Layer

1) Deep Learning: Recent remarkable advances in deep

learning, exemplified with excellent success in image recog-

nition, speech recognition, and natural language processing,

have garnered a great deal of interest for a wide range of ap-

plications [6], [7], [8]. Backed by the advancements in special-
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ized hardware accelerators [9], deep learning techniques have

continued to thrive in various domains and disciplines [10],

[11], [12], [13], [14]. To support deep learning-based analytics

for smart city applications, our cyberinfrastructure uses Ten-

sorFlow because it provides model and data parallelism and

can be easily distributed among multiple nodes and multiple

workers per node.

2) Big Data Management: To store and analyze the large-

scale data generated from various sources in a scalable and

efficient manner, our cyberinfrastructure integrates various

big data frameworks. First, we use Hadoop Distributed File

System (HDFS), a distributed file system running on top of

a cluster of machines, to store large-scale datasets. HDFS

provides reliability and availability by replicating data blocks

across multiple machines so, even though some machines

may fail, we can still access the data stored in HDFS. On

top of HDFS, we use Apache Hadoop YARN and Apache

Spark as the resource scheduler and distributed data processing

engine respectively. In addition, to gather data from legacy

database systems, we utilize Apache Sqoop, a data import tool

for bulk data transfers between RDBMSs (relational database

management systems) and HDFS. For real-time data gathering,

we use Apache Flume, a data import tool for real-time data

transfers from various information sources.

For efficient query processing from huge amounts of het-

erogeneous data, we utilize various types of NoSQL database

systems including HBase and MongoDB. Apache HBase is a

distributed NoSQL database system running on top of HDFS.

We can categorize HBase as a wide-column store or two-

dimensional key/value store. Unlike HDFS that is optimized

only for batch-style data access, HBase supports efficient

random read/write operations. MongoDB is a document-based

NoSQL database system optimized for storing unstructured or

semi-structured documents such as JSON data. MongoDB is

equipped with various indexing techniques for efficient query

processing on various data types. Our cyberinfrastructure also

supports other types of analytical workloads such as streaming

processing, geospatial processing, and graph-based process-

ing [15], [16], [17], [18].

3) Data Mining and Visualization: In addition to deep

learning-based analytics, our cyberinfrastructure provides tra-

ditional machine learning and data mining capability for struc-

tured and annotated data. We utilize various distributed data

mining tools including Apache Spark MLlib. Moreover, our

cyberinfrastructure provides visualization capability for dis-

playing both raw and analyzed data interactively. We currently

utilize the D3 JavaScript visualization library for visualizing

our data.

Fig. 4 shows the overall pipeline architecture in our cyber-

infrastructure for data collection, management, analysis, and

visualization. The raw input data are collected from multiple

sources and stored in NoSQL databases for analysis in analysis

servers. Analysis servers run different deep learning model for

inference and the result of inference will be sent to the web

server to be visualized on our website.

Fig. 4: Overall pipeline for data collection, management,

analysis, and visualization.

III. METHODOLOGIES

In this section, we explain our methodologies that we use

in developing our analysis models on top of the cyberinfras-

tructure. Our methodologies include a number of machine

learning, in particular, deep neural network modules. The

modules serve as building blocks that can be configured

and combined together to construct our analysis models. The

models are then used in the application layer to perform

various analysis tasks, as described in Section IV.

A. Spatial Analysis

In spatial analysis, we aim to discover spatial patterns in the

data such as patterns in images and geospatial patterns (e.g.,

patterns of criminal activity locations). We develop a collection

of Convolutional Neural Network (CNN) modules for spatial

analysis in our cyberinfrastructure. Through the convolutional

operation, a neuron in a CNN generates responses to local

spatial patterns at different locations. The set of activities

produced by the neuron scanning through the image gives

rise to a feature map. A CNN may consist of multiple layers,

where the feature maps from a lower layer serve as input to

a higher layer. Such a network forms a hierarchy, in which

large spatial patterns (i.e., receptive fields of neurons at higher

layers) can be constructed from smaller one (i.e., receptive

fields of those in the lower layers). CNN-based networks

have shown great success in many image processing tasks,

from classification and object recognition to medical image

diagnosis. Our CNN modules enable highly effective analysis

in our cyberinfrastructure.

We can also conduct spatial analysis using CNN beyond

image data. For example, in DeepMind’s AlphaGo, CNN is

used to analyze the positions of the stones on the GO game

board. There are plenty of scenarios in our cyberinfrastructure

that deal with geospatial data. Examples include traffic con-

gestion, criminal activities, and economic development levels

at different locations. Such data can be viewed as geospatial

”images” and analyzed using CNNs. Our collection of CNN

modules includes several CNN variants. Besides the regular

CNNs, we also include inception types of CNN as used in the

GoogleNet and the ResNet type of CNN. The variants will
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allow the applications to try and employ the CNNs that are

most suitable for the scenarios.

B. Temporal Analysis

Temporal analysis is the process of analyzing and dis-

covering temporal patterns in the data. To support temporal

analysis in our cyberinfrastructure, we develop a collection

of Recurrent Neural Network (RNN) modules. Many re-

searchers have shown success using RNNs on different types

of sequential data, from natural language understanding to

action recognition. A specific type of RNNs that we include

is the Long-Short-Term Memory (LSTM) network. LSTM’s

capability of discovering long-range correlations is particularly

useful for time series. Our application layer includes behavior

analysis, which involves patterns of actions along time. LSTM

networks serve as important modules in such an analysis.

The RNN modules can also be used for analyzing sequential

data such as texts which consist of sequences of words. Our

cyberinfrastructure can deal with large amounts of text data

from social media and other sources. Our RNN modules will

enable effective text processing.

C. Multi-Modal Analysis

Community challenges are often perpetuated by the large

number of disconnected sources of information from both

people and technology. To address the challenges, we develop

multi-modal analysis that learns features and makes decisions

by combining and fusing information of multiple modals, such

as video (image data) and sound (audio data) for gun shots.

It has been demonstrated in many learning situations that

combining data from multiple modals can greatly increase the

performance of a learning system [10]. Our cyberinfrastructure

includes components for multi-modal fusion and analysis. One

approach we implement is fusion based on deep auto-encoders.

The encoders generate features for combining information

from multiple channels. Another analysis that we include is

canonical correlation analysis (CCA) [19].

D. Deep Reinforcement Learning (DRL)

Reinforcement Learning (RL), the paradigm of learning by

trial-and-error, has been an essential framework for robotics,

control systems, and AI research domains for many decades.

Overcoming previous limitations for RL applications, mostly

associated with fundamental challenges in high-dimensional

data and model complexity, DRL opens a way to solve major

roadblocks for its potential for a diverse set of AI applica-

tions [20], [21], [22], [23]. By leveraging the recent advances

in DRL, human-level video tracking and incident reasoning,

combinations of audio and video signals for control systems,

and sequential decision-making systems using human percep-

tion data (e.g., audio, video, text) are achievable and can be

more advanced. Our cyberinfrastructure includes components

for deep reinforcement learning to develop various smart city

applications, such as smart camera controls to automatically

rotate and zoom in for traffic and crime incidents.

Fig. 5: Deep learning architecture for vehicle detection and

classification. The architecture includes the tiny Yolo and Yolo

models running on a local device and a server respectively. If

the prediction accuracy using the tiny Yolo model is less than

the predefined threshold, the feature map (shown with blue

line) will be sent to the server for in-depth analysis.

IV. APPLICATIONS

In this section, we introduce our applications that we

are developing on top of the cyberinfrastructure using the

methodologies explained in Section III.

A. Video Analysis-Based Applications

Compared to image data, video data contain richer types

of information for objects, such as their contextual time-series

information. Therefore, analyzing video data can not only give

us the more accurate reconstruction of past events such as

crime and traffic incidents but also allow us to predict critical

events in the near future. Despite many potential benefits from

video analysis, it is known to be difficult because of the huge

size and complexity of streaming video data. By tackling the

challenge based on the fog computing model described in

Section II, we are developing various types of video analysis-

based smart city applications as follows.

1) Vehicle Detection and Classification: Identifying details

of vehicles (e.g., make, model, year, color) from video streams

can be critical when tracking cars that are involved in criminal

activities (e.g., tracking cars described in AMBER Alerts).

Such analysis is time-consuming and error-prone if manually

conducted by humans. To address this challenge, we are

developing an application with a deep learning model, which

can detect cars and classify them into the detailed vehicle

information, from streaming video data. We use the Stanford

car dataset [24] and our own crawled images from Google
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Fig. 6: Examples of vehicle detection and classification based

on the proposed deep learning model shown in Fig 5.

Fig. 7: Deep learning architecture for suspicious behavior and

crime action recognition. The architecture includes two com-

putation paths running on local device and server respectively.

If the prediction accuracy using model running on the local

device (exit path 1) is less than the predefined threshold, the

feature map from Resnet block 1, will be sent to the server

for in-depth analysis.

for common car models in the United States to train our

current model. The combined dataset has 32,000 images for

400 classes. In our current prototype system, we use the Tiny

YOLO (You Only Look Once) and YOLOv2 models [25]

because YOLO provides fast and accurate detection and clas-

sification. We first run Tiny YOLO on local devices (i.e., edge

devices or fog nodes). If the score of the classification is

higher than a predefined threshold, the output of Tiny YOLO

is considered as an acceptable outcome. Otherwise, the feature

map obtained before the branch is sent to the analysis server in

which it goes through the remaining YOLOv2 layers to obtain

the object’s bounding box and its predicted class. Fig. 5 shows

our prototype deep learning architecture for vehicle detection

and classification, divided between the local device and the

analysis server. Fig. 6 demonstrates the vehicle detection and

classification results using our prototype system.

2) Suspicious Behavior and Crime Action Recognition:
Recognizing abnormal (or concerned) human actions and

Fig. 8: ResNet block architecture illustrated in Fig. 7 For

suspicious behavior and crime action recognition model. In

our implementation, we use a convolutional layer for shortcut

path instead of max pooling layer mostly used in Resnet block

architecture.

behaviors from surveillance video streams are critical for

fighting against crimes in smart cities considering that these

techniques could be used for detecting and predicting crime

events (e.g., jaywalking, hit-and-run events, armed robberies).

Provided that human actions and behaviors involve a time

dimension, we are developing an application for action and

behavior recognition by combining both CNN and RNN

modules. Fig. 7 shows our prototype deep learning architecture

for suspicious behavior and crime action recognition. Our

architecture integrates a local device with an analysis server

to ensure highly-accurate and robust crime action recognition.

Our CNN module, a stack of multiple ResNet [26] blocks,

is responsible for analyzing activities within each frame in a

video stream and transform a frame into a representation of

activity features. Fig. 8 shows the details of our current ResNet

block architecture used in this application. At each time step

t, the CNN module processes the frame with time stamp t
and outputs a representation for that frame. The sequence of

the CNN’s outputs along time will serve as the input to the

RNN module, which consists of multiple LSTM layers. The

LSTM layers extract temporal patterns along the per-time step

activity representations. A final classifier, composed of one or

more fully connected layers, takes the temporal patterns and

generates recognition decisions.

To run the application based on the fog computing model

described in Section II, we first execute ResNet block 1 with
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LSTM 1 and FC1 on the local device (i.e., edge devices or

fog nodes). If the entropy score of Output 1 (i.e., classification

result) is higher than a predefined threshold, we index the

video using Output 1 on the local device. Otherwise, the

feature map obtained by ResNet block 1 is sent to the analysis

server in which it goes through the remaining network to

obtain Output 2. We then index the video using Output 2 on

the analysis server.

We train the model using previously recorded videos from

the city’s street and traffic cameras. We split the videos into

clips of several minutes in length and label them into different

categories of suspicious behaviors and crime activities with

the help of experts. Once the model is trained, it can be

deployed to monitor video streams from several street and

traffic cameras. When a suspicious behavior or crime activity

is recognized, our application will log the time, location, the

type of activity, and the video feed during that time window

into a database. An alert will be sent to a human operator

who reviews the information and the original video clip, and

forwards the information to the authorities if needed.

B. Social Network Analysis-Based Applications

Social network analytic techniques are used by law enforce-

ment to identify social relationships which interconnect violent

offenders and criminal group members. By uncovering the

social connections of a victim or a suspect, law enforcement

may focus their investigations on individuals who are known

to have a relationship history (either through conflict or

collaboration). Social network relationships are detected by

identifying the first-degree associates, individuals who are

linked in place and time through criminal incident reports

and/or through known gang or group affiliations. While this

approach is useful for monitoring violent group and gang-

related activity, and can be proved to be successful for uncov-

ering leads to informants, witnesses, and co-offenders involved

in criminal events, the sphere of social connectivity can be

exhaustively large for timely analyses and investigations.

For example, of the 67 groups and gangs and their 982

members identified and observed in Baton Rouge area over the

past 6 years, each gang member has a network size of 14 first-

degree associates on average. However, best-practices suggest

that investigative techniques extend to second-degree affiliates

as well (i.e., a relationship connection through a shared co-

offender). This approach may yield a field of interest which

contains approximately 200 second-degree associates. These

numbers are prohibitively large for an under-resourced staff

of law enforcement agencies to investigate on a regular basis.

To address this challenge, we are developing a deep hybrid

model which captures the temporal and textual features of

criminal and gang networks constructed by Twitter data of the

criminals and gang members, along with deep learning and

natural language processing (NLP) techniques. First, we iden-

tify the Twitter IDs of the first- and second-degree associates

of criminal and gang members. Next, we use NLP techniques

to capture textual features present in tweet text at given

times and locations associated with violent criminal incidents.

Using a multi-modal algorithm, we integrate different types of

information to determine whether a tweet from a criminal or

gang associate falls within the specified time and location field

of interest. The advantages of using multi-modal model are

triangulation of event locations, times, and social relationships

across complex and extensive volumes of data.

By combining the expansive field of second-degree asso-

ciates with geo-targeted tweets during the time frame of a

violent incident, the field of associates may be strategically

narrowed to known associates who might have been in the

location of a criminal incident at the time of the event. This

layering of data may provide a tighter focus around a much

smaller persons-of-interest field for detail investigations, and

thus it may result in a more efficient use of law enforcement

resources.

V. CONCLUSION

In this paper, we presented our current efforts and ultimate

vision to build the distributed cyberinfrastructure that inte-

grates big data and deep learning technologies with a variety

of data for enhancing public safety and livability in cites. We

also introduced several methodologies and applications that

we have been developing on top of the cyberinfrastructure to

support diverse community stakeholders in cities.

In addition to the aforementioned methodologies and appli-

cations, we plan to continuously extend our cyberinfrastructure

in close collaboration with community stakeholders to conduct

integrative research that transforms existing distributed com-

puting capabilities in enhancing community well-being. One

of our future research directions is integrating health care-

related data, such as medical history and radiology images,

into our cyberinfrastructure to support the transformation of

health and medicine in cities. Through a MOU (Memorandum

of Understanding) between LSU and several medical schools

and centers in Louisiana, we started collecting anonymized

medical data into our cyberinfrastructure. In this integrative

research, we aim to address various types of challenges

including not only technical challenges such as big medical

data management and scalable distributed computing but also

legal and ethical challenges such as HIPAA (Health Insurance

Portability and Accountability Act)-compliant data storage and

processing.

One critical health care-related problem that we are particu-

larly interested in is the opioid epidemic in the United States.

According to the U.S. Department of Health and Human

Services, 116 people died every day from opioid-related drug

overdoses in 2016 [27]. Deep learning-based analytics using

our cyberinfrastructure may uncover additional factors that

explain why opioid mortality rates are at epidemic levels. Data

sources that we plan to analyze include, but not limited to,

social network analysis, online social networks (e.g., Twitter,

Facebook, etc.), the number of opioid prescriptions in Baton

Rouge, traffic volume/DOTD data, drug-related activities in

community, substance use-related crime arrests, locations of

overdoses, 911 calls, and community knowledge (e.g., resi-

dents, law enforcement, coroner, etc.).
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