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Abstract—Third-generation DNA sequencing technologies such
as single-molecule real-time sequencing (SMRT) and nanopore
sequencing have the potential to fill the gaps in the existing
genome databases since the raw sequences produced by these
machines are much longer than those of previous generations
and therefore result in more contiguous assemblies. However,
these long reads have a high error rate, which makes the
assembly process computationally challenging. Moreover, since
existing long-read assemblers are designed to run on a single
machine, they either take days to complete or run out of
memory on even moderate-sized datasets. In this paper, we
present a distributed long-read assembler that can assemble
large-scale noisy sequence datasets on thousands of cores,
resulting in orders of magnitude faster assembly times. By
effectively using the map-reduce computation model with a
distributed hash-map, both built using a high-performance
active messaging middleware, we can assemble a PacBio human
genome dataset with 139 billion base-pairs (about 130 GB)
in about 33 minutes (using 2,560 cores) compared to more
than 38 hours (using 28 cores) with the current state-of-the-
art assembler.

Index Terms—genome assembly, third-generation sequences,
long reads, big data, map-reduce, high-performance computing

1. Introduction

The study of an organism’s genome (i.e., the entire set
of its DNA) has a variety of applications. Notable use-cases
are treatments of cancer using precision medicine [1], mon-
itoring food contamination [2], [3], outbreaks of food- and
water-borne diseases [4], and drug resistance in bacteria [5].
Extracting the DNA information consists of two stages -
DNA sequencing and sequence assembly. The process by
which nucleotides of a DNA sequence are parsed into text
is called sequencing, and the devices used to do so are
called sequencers. Existing sequencers cannot process entire
genomes without significant loss of accuracy so they extract
small regions called reads from pseudo-random positions in
the DNA. With a high enough sampling depth, these reads
will likely have overlaps between them. The process by
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which these overlapping reads are aligned and merged to
recreate the original sequence is known as de novo sequence
assembly (henceforth referred to as assembly).

The main challenge in assembly is that the positions
in the original DNA sequence from where the reads were
sampled are not known, and thus rebuilding it is equivalent
to solving the shortest common superstring problem. Hence
programs known as assemblers are used to find the overlaps
between all pairs of reads, encode them in a graph, and
use it to estimate the original sequence. Ideally, if reads
have perfect or near-perfect accuracy, the overlaps are found
by indexing them using FM-Indexes, de Bruijn graphs, etc.
However, reads produced by the third-generation sequencers
(also called long-read sequencers) contain several base-level
mismatches/substitutions, insertions, and deletions with er-
ror rates varying between 15-30% [6]. This renders ex-
act matching ineffective in finding overlaps so long-read
assemblers use computationally expensive algorithms like
Smith-Waterman to find gapped alignments between se-
quences [7]-[9]. An example of the types of errors in two
overlapping noisy reads is shown in Fig. 1.

Despite the higher error rate, third-generation sequences
are 2-3 orders of magnitude longer and known to pro-
vide higher-quality assemblies owing to a better repeat-
resolution [9]-[11]. Therefore, these datasets can be use-
ful in filling the gaps (unknown regions) in the reference
genomes of organisms. For instance, the recently assembled
results from Oxford Nanopore Technologies of the human
genome report closure of 12 gaps, each longer than 50 kilo-
bases [12]. Moreover, advances in single-molecule sequenc-
ing technology have reduced costs, increased throughput,
and produced much more portable machines.

In contrast, long-read assemblers are still lagging com-
pared to their previous generation (NGS) counterparts. De-
spite using costly inexact-matching algorithms, they run on a
single node and, in some phases, use one thread. Therefore,
they often have long execution times, especially for large
genome datasets, which can be several hundreds of GBs in
size. Moreover, they are prone to running out of memory
unless executed on machines with large main memories. To
the best of our knowledge, no end-to-end distributed long-
read assembler exists, which means current assemblers often
take days as they are limited by the number of cores, the size
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Figure 1: Types of errors in two overlapping sequences

of main memory, and the I/O bandwidth of a single machine.
We believe that this is the biggest roadblock against the
widespread adoption of third-generation sequencing.

In this paper, we present Hiper3ga ! (High-Performance
3rd-Generation Assembler), a distributed long-read assem-
bler that can assemble large datasets faster by scaling-up
on multiple machines. To the best of our knowledge, this
is the first fully distributed long-read assembler reported in
the literature. This paper makes the following contributions.
1) Hiper3ga distributes and parallelizes the computation in
the Minimap+Miniasm [11], which is reportedly the fastest
long-read assembler. Hiper3ga can scale up to hundreds of
nodes and thousands of cores and thus efficiently assemble
large-scale datasets that are otherwise difficult or time-
consuming to process using a single node. 2) Hiper3ga
builds a high-performance map-reduce framework and a
distributed multi-map using GASNet’s [14] RDMA-based
active messaging primitives over high-throughput commu-
nication conduits. Although we evaluate Hiper3ga using
Infiniband networks, it can run seamlessly on other conduits
such as Cray Aries, Gemini, and IBM’s Torus owing to
GASNet’s conduit transparency. 3) We evaluate Hiper3ga
using several real-world datasets, ranging in size from about
3 GB to 139 GB, on a variety of cluster configurations and
report the assembly of a PacBio human genome dataset in
about 33 minutes on 128 nodes, which is about 71 x faster
than its single node ancestor.

The rest of the paper is structured as follows. In Sec-
tion 2, we provide a background of the assembly prob-
lem and summarize the related works before stating the
motivation for this work. Next, in Section 3, we describe
the methodology and implementation details of Hiper3ga.
Lastly, we evaluate our work on various datasets against
the state-of-the-art long-read assembler in Section 4 and
conclude this paper in Section 5.

2. Background and Related Work

Given a set of sequences S (|S| = r) over the alphabet
Y. ={A,C,T,G}, our goal is to find a set of alignments
A C 8 x 8 x N%, where each a; € A is a 6-tuple
(si, 85, bi,bj, e;,e;) that corresponds to an overlap between
the sequences s; and s; starting from positions b; and b;
respectively and ending at positions e; and e; respectively.
For each s; € S, we define a list IC; of k-mers such that
a k-mer k;; € K; is the k-length substring of s; starting
from position j. If two sequences s; and s; have an overlap
longer than k, then we have C; N IC; # 0.

1. The code is available at https://github.com/sayangoswami/hiper3ga.git

k-mers are used in the seed-and-extend method [15]
of finding overlaps where, for any two sequences s; and
sj, we find k-mers common to both K; and K; and align
the sequences such that these common k-mers (known as
seeds) are also aligned. In order to perform efficient all-vs-
all alignment, all k-mers are indexed in a fashion that allows
us to find the list of all sequences and the corresponding
positions where any given k-mer occurs. Therefore, all k-
mers in L =< K1, g, -+, K, > along with their locations
are indexed in the form of 3-tuples (k;;, 1, 7).

To reduce memory usage, most approaches index only
those k-mers that are representative of the sequence. Such
a set of representative k-mers can be chosen in a variety
of ways. BLAST [16], which is one of the most popular
tools for sequence alignment, uses k-mers at fixed intervals
(i.e., every p k-mer) of the reference sequence and indexes
them on a hash table. On receiving a query sequence, it
generates all k-mers from it and searches for them in the
hash table of reference k-mers. If there are several matches
in a relatively small window, it deduces that the query and
reference sequences are aligned in that window. On the
other hand, MHAP [7] uses a set of m distinct hash func-
tions {h1,ha, -+, h,} to choose m representative k-mers
{ki |kl - K7, } from each sequence s; € S such that

§; = argmingcx, hj(x). These k-mers are used to create
a min-hash sketch for each sequence, and the similarity
between two sequences is detected by approximating their
Jaccard coefficients using their respective sketches. While
this method is memory efficient, it only provides a cluster of
similar sequences instead of a set of candidate seeds/anchors
where these sequences are aligned to each other.

Another method of selecting anchor k-mers is by us-
ing minimizers [17]. In this method, a k-mer k;; is only
considered for the role of an anchor if s; contains a
region of w consecutive k-mers K;/ C K; for which
kij; = argmin ¢,/ f(y), where f is a hash function. This
technique is similar to that used in MHAP, but while MHAP
picks a fixed number of candidates from the entire sequence,
this selects one candidate from each fixed-size window
of the sequence. This method is also more efficient than
BLAST since it queries a fraction of all the k-mers in a
sequence. The minimizers are then used as seeds to align
sequences even if they do not have regions that exactly
match by virtue of having a large number of minimizers
in common. This process is depicted in Fig. 2 where we
generate 4-length minimizers (in dark) using lexicographical
ordering on a window size 2 (i.e., two k-mers), and use the
common minimizers between two overlapping noisy reads
(in colored) as anchors to find regions of alignment.

Most long-read assemblers can be categorized into di-
rect, hierarchical, and hybrid [18]. Direct assemblers try to
assemble erroneous reads in a single overlap-consensus pass
without trying to correct them. Examples of such assem-
blers include Celera [19] and the Minimap+Miniasm [11]
pipeline, which uses minimizers to find multiple-sequence
alignment (MSA). Once the erroneous reads are aligned,
these assemblers merge the overlapped regions of the reads
to create longer contiguous sequences known as contigs.
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Figure 2: Alignment of noisy reads using minimizers

Finally, in the polishing phase, the matches, mismatches, and
gaps in contigs are corrected using partial order alignment
tools such as RACON [20].

On the other hand, some assemblers attempt to align
shorter reads to the longer reads in the same dataset and
use a consensus of shorter reads to correct the long ones.
The alignment and consensus steps are typically performed
multiple times to improve the quality of base calls, and so
we can obtain contigs from high-quality long reads. Such
assemblers are called hierarchical (or self-correction) assem-
blers and include HGAP [21], Falcon [22], and Canu [9] that
uses the min-hash technique mentioned before.

Finally, the third type known as hybrid assemblers
works on the same principle as hierarchical assemblers,
but instead of using shorter reads from the same library,
they use high-quality short reads from other datasets (e.g.,
second-generation sequencing) to correct the long reads.
Examples of hybrid assemblers include HybridSPAdes [23],
Cerulean [24], and dbg2olc [24].

2.1. Motivation and Goal

Both the hierarchical and hybrid strategies involve a
computationally expensive base-level error-correction step
consisting of multiple-sequence alignment and subsequent
consensus generation. These require dynamic programming
solutions such as Smith-Waterman which have a quadratic
time complexity. Therefore, both these approaches require
long execution times. On the other hand, direct approaches
are faster, but their assemblies are noisy and must be cor-
rected to make them usable. One way to do that is to re-
align the noisy contigs with the original reads and then
polish them using a consensus-generation tool. Indeed, this
approach has been studied where Minimap was used to first
align reads to each other and subsequently to the contigs pro-
duced by Miniasm. The contigs when polished by RACON
produced high-quality assemblies an order of magnitude
quicker than existing state-of-the-art assemblers [20].

Despite the rising popularity of third-generation se-
quencing and advances in long-read assembly, to the best of
our knowledge, there is no distributed assembler available
today. This poses a two-pronged problem for sequencing
the larger datasets. Existing assemblers processing these
datasets not only take days to finish but often run out of
memory even on big-memory machines. Thus, even with
access to a supercomputing cluster or other distributed
computing infrastructure, practitioners may be unable to
assemble and use long-read sequence datasets. Our goal
in this work is to alleviate these issues by building a
distributed long-read aligner and assembler. We extend the
Minimap+Miniasm approach because not only is it fast and
amenable to parallelization, but it can also produce high-
quality contigs with the help of RACON.

3. Methodology

Hiper3ga is designed to run on a cluster of n nodes and
assumes the existence of a distributed filesystem (DFS) that
is globally accessible to all nodes in the cluster. Each node
7 runs a process p; (we use the terms node and process
interchangeably) that (a) reads the input sequences from the
DFS, (b) finds alignments among all sequences belonging to
itself and its peers, (c) builds a graph using those alignments,
(d) generates contigs, and (e) writes the contigs back to the
DFS. Moreover, each node has local storage, which is used
to temporarily store the sequence alignments before they are
used to generate contigs.

Although the processes at each node are ranked, they
work in a peer-to-peer as opposed to a manager-worker
model during most of the execution. However, in certain
scenarios involving a gather-scatter communication pattern,
the process ranked O (pg) acts as a manager, aggregating data
from its peers and broadcasting the results. The process at
each node runs multiple worker threads and has a master
thread that is responsible for synchronizing them. The as-
sembly pipeline consists of four main stages - 1) generating
minimizers, 2) indexing minimizers and the locations from
which they were generated, 3) aligning sequences, and 4)
generating contigs. Fig. 3 depicts an architectural overview
of the computation involved in these stages.

3.1. Overview of GASNet

In Hiper3ga, the spawning of processes on the nodes and
all subsequent communication and synchronization between
them is handled by GASNet [14] communication middle-
ware that provides active message (AM) primitives using
Remote Direct Memory Access (RDMA). It also provides an
extended API for remote memory-copy (gets and puts) and
a bootstrapping interface that can be used to launch jobs on
clusters. During the bootstrap process, each node registers
a user-specified amount of memory for communication.
The address of this registered memory, henceforth called
GASNet-attached segment, and the size of the memory
segment for each node is made known to all other nodes.



o [@ﬁe;di_rlﬁlt_chanl: N jl | Partition
| Generate (k; ;, i, j, d) tuples | (kij,i,j,d) | 1
| k; j=minimizer, d=strand, | |L tuples by k; ,I

i=read-id, j=position

[@@Excha;ge_ T (W hndex
| partition sizes with peers. ||  (k;;,i,/,d) | }
| Fetch partition from peers | | |L

@ -, OOL; .,a:f;-n
Stream sequence ((x, 7, j', d') tuples from| reate
and generate

|
> gl | l
I->| indexes (local/remote) || al]gnmentsl

(k, jolsd>d) tuples | from hlts
L

3oNA3Y ‘IT4INHS ‘dVIN

NOITV

and generate hits I L—

——— e, ————

| Read alignments.| | Build graph | | Simplify graph. |—¢

| Partition P from alignments. ™1 Generate contigs.|
among nodes. Remove contained | I Write to file. _}%a

JTIINISSY

Legend o Data in Local Filesystem
oo . .

&) Datain Distributed FS
@ Parallel+Distributed

Key-value store (122 Data in memory @ Involves network comm.

Input sequences Alignments

Partitions Contigs

Figure 3: Overview of Hiper3ga

An AM in GASNet works as follows. Node A sends
an AM with a handler function, a payload, and arguments
to node B. Upon reaching B, the AM invokes the handler
using the payload and arguments and optionally sends a
reply to A with another AM. Depending on how the payload
is copied to the destination node, AMs can be categorized
as MediumAM or LongAM. LongAMs have larger payloads
(up to 2GB on Infiniband networks) which must be copied
directly to the destination node’s GASNet-attached segment
whereas MediumAMs have shorter payloads (less than 4KB
on Infiniband) which are copied to memory allocated by
the AM on the destination node. In case of remote-gets, the
source data must lie in the GASNet-attached segment of
the remote node, whereas in case of remote-puts, the entire
destination region size must lie within the peer’s attached
segment. Unlike the longAMs, the size of a remote copy
payload is limited only by the size of the registered memory
segment.

3.2. Map: Generate Minimizers

In this phase, the input file is split into equal-sized
chunks which are read from the DFS in parallel by the
nodes. Each node in turn splits a chunk among multiple
threads which obtain the line offsets in the file. These offsets
are sent to the master which uses them to rearrange the
chunk-boundaries such that a read is contained in its entirety
within a single chunk. Next, each node re-streams the input

chunks and sends it along with the lengths and offsets of
the sequences in the chunk to a thread-pool for processing.
The threads in the thread-pool work on the sequences in
parallel and for each sequence, a thread generates a list of
4-tuples (k;j,14,j,d) where k;; is the minimizer obtained
from sequence s; at position j on strand d € {0, 1} (original
or Watson-Crick complement). After a chunk is processed,
the tuples are bit-packed in parallel and stored in blocks
before moving on to the next chunk. We have observed
that this reduces the data to about 55% of its original size.
Fig. 4 shows the data generated by two nodes from two
sequences that were previously introduced in Fig. 2. The
tuples highlighted in red are scheduled to be transferred to
the other node in the subsequent phase. Note that the strand
information is omitted for brevity.

Node 0 Node 1

Input (Read-id=0): Input (Read-id=1):
ATCTTTACGGACTATCGACCTGACCCTCTGGAC CTATCGCTCAACCTATACTGGACGTCTTGAACA
Output: Output:

ATCT-(0,0) CTTT-(0,2) TTAC-(0,4) CTAT-(1,0) ATCG-(1,2) CGCT-(1,4)

TACG-(0,5) ACGG-(0,6) CGGA-(0,7) cTcA-(1,6) CAAC-(1,8) AACC-(1,9)
GACT-(0,9) ACTA-(0,10) CTAT-(0,11) || ACCT-(1,10) CCTA-(1,11) CTAT-(1,12)
ATCG-(0,13) CGAC-(0,15) ACCT-(0,17) || ATAC-(1,14) ACTG-(1,16) CTGG-(1,17)
ccTG-(0,18) CTGA-(0,19) GACC-(0,21) | | GGAC-(1,19) GACG-(1,20) ACGT-(1,21)
ACCC-(0,22) CCCT-(0,23) CCTC-(0,24) CGTC-(1,22) GTCT-(1,23) CTTG-(1,25)
CTCT-(0,25) CTGG-(0,27) GGAC-(0,29) TGAA-(1,27) GAAC-(1,28) AACA-(1,29)

Figure 4: Generating (minimizer,read-id,position)-tuples
from reads.

3.3. Shuffle: Distribute minimizers among nodes

During the map phase, different nodes may generate the
same minimizer from different sequences. These minimizers
and their corresponding addresses composed of sequence-
ids, positions, and strands must be aggregated so that they
can be used as anchors when aligning their corresponding
sequences. The first step in this process is to map the
minimizers into one of n nodes based on some function g;
and the second step is to distribute the minimizer tuples such
that for every minimizer k; residing in node ¢, g1(k;) = 1.
In figure 4, the minimizers are mapped between nodes 0
and 1 based on their last bases. Minimizers ending with
bases A and T are mapped to node O and those ending
with C and G are mapped to node 1. Fig. 5 shows the
minimizers after they have been transferred to the nodes
to which they were mapped. The partitioning and all-to-all
transfers of minimizer tuples are performed as follows.

3.3.1. Partition. In this step, each bit-packed data block
generated at node p; during the map phase is assigned a
worker thread from p;’s thread pool. Each worker thread j
consumes the blocks assigned to it one by one and appends
the output to n lists £, L, -+, L;, , one for each node in
the cluster. For any block, a thread unpacks it and splits the
tuples in it into n partitions by performing a radix sort on
g1(x) for every minimizer « in the data block and obtaining
the partition offsets. These partitions are bit-packed and
appended into n lists maintained by the thread. At the end
of this step, node p; ends up with ¢ x n lists where each list



Node 0 Node 1

Locally generated:

ATCT-(0,0) CTTT-(0,2) CGGA-(0,7)
GACT-(0,9) ACTA-(0,10) CTAT-(0,11)
ACCT-(0,17) CTGA-(0,19) CCCT-(0,23)

CTCT-(0,25)
Shuffled:

CTAT-(1,0) CGCT-(1,4) CTCA-(1,6)
ACCT-(1,10) CCTA-(1,11) CTAT-(1,12)
ACGT-(1,21) GTCT-(1,23) TGAA-(1,27)

AACA-(1,29)

Locally generated:

ATCG-(1,2) CAAC-(1,8) AACC-(1,9)
ATAC-(1,14) ACTG-(1,16) CTGG-(1,17)
GGAC-(1,19) GACG-(1,20) CGTC-(1,22)

CTTG-(1,25) GAAC-(1,28)
Shuffled:

TACG-(0,5) TTAC-(0,4) ACGG-(0,6)
ATCG-(0,13) CGAC-(0,15) CCTG-(0,18)
GACC-(0,21) ACCC-(0,22) CCTC-(0,24)

CTGG-(0,27) GGAC-(0,29)

Figure 5: Shuffling data between nodes based on minimizers

Lj,.,j € [1,t],k € [1,n] is composed of bit-packed blocks
of tuples generated at node ¢ but destined for node k.

3.3.2. Transfer. Once all the nodes have finished parti-
tioning the minimizers based on their destination nodes,
Hiper3ga commences the data transfer between all node-
pairs using a one-to-one personalized communication with
E-cube routing [27]. In an n-node cluster, the transfer is
achieved in » — 1 rounds with inter-node synchronizations
between them. At round ¢, each node i € [1,n] pairs up
with node j = ¢ @ ¢ and exchanges data with it as follows.

In the beginning, each node i creates a local list O;
to store the shuffled data, and the address of this list is
broadcast to every other node in the cluster. Subsequently,
at every round, for every compressed data block in the list
L, ;Vx € [1,t], node i asynchronously copies the block to
node j’s GASNet-attached segment using extended APIs. If
it cannot send any more data either due to lack of space in
node j’s segment or because there are no more blocks to
send, node ¢ waits for all asynchronous transfers to finish
and sends a MediumAM to node j with the offsets of the
transferred data. The MediumAM on reaching node j invokes
its handler which uses the message offsets in the payload to
copy data from node j’s attached segment to the output list
O; and reports back to node ¢ with an acknowledgement.
Node 7 continues this process until all data blocks are copied
to node j. After all remote transfers are over, each node
moves the remaining data (i.e., partitions belonging to itself)
to the list O; and finishes. Ultimately, each node 7 ends
up with a single list O, of bit-packed data-blocks where
every block contains tuples where the minimizer x satisfies

g1(z) = 1.
3.4. Reduce: Index Minimizers

After the shuffle phase, the minimizer tuples at each
node are stored in a local index using minimizers as keys.
The value corresponding to a key (minimizer) in the index
is a list of (sequence-id, position, strand) tuples from which
the it was generated. The index is composed of multiple
shards, each of which is an independent hash table and can
be updated in parallel to others. The process of distributing
tuples among shards is similar to that in section 3.3.1 and
involves mapping a minimizer x to shard ¢ using a function
g2 such that go(x) = ¢. Since tuples are partitioned and
shuffled on the basis of their minimizers, the ones with the
same minimizer x will always reside in the same node j =

g1(x) and can be obtained by other nodes from the index
at node j. Similarly, the shard in which a key-value pair
resides can be obtained from the value of go(x). Once the
tuples are distributed, each shard is processed by a thread
that sorts them by their minimizers. Next, for each shard the
number of unique minimizers is calculated, a hash table is
pre-allocated, and the key-value pairs are inserted into it.

The index at each node together with GASNet’s commu-
nication primitives is used to simulate a read-only distributed
hash-map. A client searching for a minimizer first finds the
node responsible for it and subsequently the shard to which
the minimizer belongs. Next, it sends an AM with the key
(minimizer) to the destination node, which then invokes the
handler which in turn gets the corresponding value from the
index and sends it back to the caller. Note that in practice,
the requests are sent in batches in order to improve the
network throughput. Fig. 6 shows the indexed minimizers
for the example in Fig. 4. The minimizers highlighted
in different colors are the ones that have more than one
occurrence.

Node 0 Node 1

AACA-{(1,29)} ACCT-{(0,17)(1,10)}
ACGT-{(1,21)} ACTA-{(0,10)}
ATCT-{(0,0)} cccT-{(0,23)}
CCTA-{(1,11)} CGCT-{(1,4)}
CGGA-{(0,7)}
CTAT-{(0,11)(1,0)(1,12)}
CTCcA-{(1,6)} cTCT-{(0,25)}
CTGA-{(0,19)} CTTT-{(0,2)}
GACT-{(0,9)} GTCT-{(1,23)}
TACG-{(0,5)} TGAA-{(1,27)}

AACC-{(1,9)} Accc-{(0,22)}
ACGG-{(0,6)} ACTG-{(1,16)}
ATAC-{(1,14)} ATCG-{(1,2)(0,13)}
caac-{(1,8)} ccTc-{(0,24)}
ccT6-{(0,18)} CGAC-{(0,15)}
c6TCc-{(1,22)} €166-{(1,17)(0,27)}
CTT6-{(1,25)} GAAC-{(1,28)}
GACC-{(0,21)} GACG-{(1,20)}
GGAC-{(1,19)(0,29)} TTAC-{(0,4)}

Figure 6: Indexing read-id and position tuples by minimiz-
ers.

3.5. Aligning Sequences

In this phase, each node streams chunks of input se-
quences (like they do in the map phase), which are processed
in parallel by multiple threads. For each query sequence s;,
the thread responsible for it generates a list of its minimizer
tuples (z,1, j,d) where x is the minimizer hash value, i is
the sequence-id, j is the position, and d is the strand in s;
from which = was obtained. For each tuple in the list, it
then checks for occurrences (hits) of its minimizer in other
sequences (i.e., for tuples of the form (x,4',j’,d")) in the
distributed hash-map. A hit is stored as a 4-tuple (¢, y, a, )
where ¢/ is the id of the target sequence, y is the strand
relative to d where the minimizer appears (y = d®d’), j' is
the position in sequence ¢’ where the minimizer appears, and
a is the relative alignment of sequence ¢’ with sequence 7
(j'—jify =0, j+j' otherwise). These tuples are then sorted
by their sequence-ids followed by their relative alignments.
This sorted list is subsequently used to find out if a target
sequence s;; has multiple hits with query sequence s; and
where those hits are located relative s;.

Like Minimap, the hits between two sequences are
clustered using Hough transformation [28] in order to use
them as anchors in the alignment of the two sequences.
Informally, a hit between sequences s; and s;/ in positions j
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Figure 7: Binning common minimizers using Hough Trans-
form

and j' can be represented as a point (j, ') in a 2-dimensional
plane. If s; and s;; have a significant overlap with each
other, they will produce several hits, all of which will be
represented as points in the same plane. Furthermore, if the
overlapping region is error-free (i.e., both s; and s;; contain
the same substring o), all the hits generated from this region
will lie on a straight line. This line will be inclined at a 45°
angle since for each unique minimizer x generated from o,
the distance between positions j and j where x appears in
sequences s; and s; will be constant.

However, if there are errors the hits will not form an
exact straight line, but will be clustered around one (ap-
proximately collinear). Two minimizer hits (¢, y1, a1, 1)
and (i, y2,a2,j’5) between query sequence s; and target
sequence s;; are said to be approximately colinear within a
bandwidth e (500bp by default as suggested by Minimap) if
|ay — as| < e. Once the collinear hits are obtained, Hough
Transformation is used to find a straight line such that a
majority of the minimizers lie on it. Since the slope is 1,
the line takes the foom y = x + ¢ = ¢ = y — z. For
each hit, we can calculate the intercept ¢ and use the value
supported by the majority of the points. This line is used
as a crude alignment of the sequences. Fig. 7 shows the
common minimizers generated from the reads in Fig. 2,
which are represented in a 2D plane. The lines y =  + 11
and y = x + 10 are supported by two minimizers each,
whereas the lines y = £+ 7 and y = = — 1 are supported by
one minimizer each. The hit at (12, 11) is not collinear with
the others and is not considered in the Hough Transform.

3.6. Assembly

The assembly phase can be split into two sub-phases -
graph building and graph simplification. The first step is to
distribute the set of alignments created in the previous phase
between the different nodes. This is performed using the

shuffle method explained in section 3.3. Once the alignments
are shuffled among nodes, they are further partitioned among
the threads so that they can be processed in parallel. The
inter-node and inter-thread partitioning is done based on
some function gs which is applied to the query read-ids
of alignments. Specifically, an alignment a is mapped to a
partition 7 if g3(q,) = ¢ where ¢, is the query read-id of a.
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Figure 8: Types of overlaps

Each thread sorts the list of alignments pairs by their
query read-ids and for each unique query, it classifies the
alignments with other reads (targets) into five categories -
1.) Internal overlaps - if the target read has regions that are
aligned to the query and there are regions on either side that
are not aligned (overhangs) such that they are longer than
some threshold, the overlap is classified as internal. In other
words, the overlap is considered to have arisen from repeats
rather than from sequencing the same region of the genome.
Internal overlaps are ignored since they do not contribute to
read extension. In figure 8a, if the overhangs are larger than
some threshold, it is considered an internal overlap.

2.) Query read contained - if the query read is completely
contained in one of the target reads (i.e., the overlapping
region of the query spans almost the entire read, and the
overhang regions are small enough), the query read is
marked for deletion. The thread processing the alignment
uses an atomic bit-vector to set the bit corresponding to the
query read-id to 1. In figure 8b, read s; will be considered
to be contained in read s; provided s;’s overhanging regions
are smaller than some threshold.

3.) Target read contained - like in the previous case, if the
target is contained in the query, it is marked for deletion.
4.) Query-suffix target-prefix overlap - if the suffix of the
query read has a significant overlap with the prefix of a
target read and the overhangs are shorter than some thresh-
old, a (query, target, overlap length) tuple is created which
corresponds to a weighted edge in the assembly graph.

5.) Query-prefix target-suffix overlap - if the prefix of the
query read has a significant overlap with the suffix of the
target read, we create a (target, query, overlap length) triple.

3.6.1. Aggregating deleted reads. Once the hits are clas-
sified by all nodes, and the contained reads are marked for
deletion, the atomic bit-vectors from all nodes are gathered
by the master node, aggregated, and scattered back to the



peers. The gather-scatter process works as follows. Each
node copies its bit-vector into the GASNet-attached segment
and performs a barrier synchronization. Node py performs a
remote-memory-get of 7 bits (r is the number of reads) from
each peer and performs a bitwise-OR of the elements in its
local vector with those of the remote vector. Once all data
from all nodes are aggregated, pg performs remote-memory-
puts to all peers, followed by a barrier synchronization.

3.6.2. Deleting edges connecting deleted reads. When the
nodes get the updated set of deleted reads, they remove any
suffix-prefix overlaps where either the suffix or the prefix
or both belong to one of the deleted reads. Since most
of the popular third-generation sequencers have a long-tail
distribution of read lengths (as shown later in Section 4.1),
it is highly likely that most of the smaller reads will be
contained within a few longer ones. Hence, removal of
contained reads significantly reduces the number of edges
in the final graph by many folds. This makes it possible for
downstream phases to process the graph on a single machine
and avoid inter-node communication and synchronization.

3.6.3. Creating an assembly graph. After edges originat-
ing from and/or incident upon contained reads are removed,
all nodes send their remaining edge list to the master node.
Each peer copies the number of edges and the list of edges
into their GASNet-attached segment, which is fetched by the
master using remote-memory-gets. Next, the master creates
a graph and sanitizes it using two rules - (1) if two vertices
(reads) have more than one edges (overlaps), it chooses the
one with the highest weight (longest overlap) and deletes
the rest of the edges; (2) if an edge exists from vertex u to
v but not from v’ to ' (i.e., the Watson-Crick complements
of u and v respectively), the edge from u to v is deleted.
Once the graph is made consistent, its edges are tran-
sitively reduced whenever possible. For any 3 vertices u,v
and w, if there exist edges © — v, v — w and v — w,
we can remove the edge v — w and its complement edge
u’ — w’ without affecting the connectivity of the graph.
Moreover, in order to handle repeats, if some vertex v has
multiple outgoing edges FE,, and there exists a subset of
edges E’, € E, with weight less than some fraction (.5
by default) of the weight of the heaviest edge in E,, all
edges in E’, are removed [11]. Both the steps mentioned
above help reduce the number of branches in the graph and
simplify it for the subsequent unitig-generation step.

3.6.4. Simplifying graph and generating unitigs. The
assembly graph G is used to create a set U of unitigs where
each u € U is a sequence generated by traversing a path in
G where each vertex in the path has at most one incoming
edge and at most one outgoing edge. Unitigs are created
by concatenating the reads corresponding to the vertices in
the path and merging their overlapping regions. Intuitively,
each unitig is formed by merging two or more overlapping
reads in the original dataset. In the ideal scenario, we would
have a single unitig representing the genome from which the
original reads in the dataset were sequenced. However, it is

possible that subgraphs within the graph are not reachable
from one another due to low coverage regions formed as a
result of sequencer bias. Moreover, the graph often contains
vertices that have more than one incoming edge (joins) or
outgoing edge (forks) which results in an ambiguity in path
selection during unitig generation.

Some forks and joins can form due to sequencing errors
and can be categorized as either tips or bubbles. A tip is a
short path consisting of at most 4 vertices by default (the
last vertex in the path has no outgoing edge), and originating
from some vertex with out-degree greater than 1. A bubble
is comprised of two or more paths between two vertices
u and v such that each path is an unitig and shorter than
some threshold (50k bases by default). Bubbles are popped
by keeping the longest path between the source and sink
vertices and deleting all others. The tip-removal, bubble-
popping, and simplification phases are performed iteratively
until the graph cannot be simplified any further.

Note that each unitig generated in this method is rep-
resented as a list p of tuples, where the i" tuple (j,l;)
consists of j;, the read-id and [;, the length of the prefix of
read j;. However, the unitig in this form is not usable for
downstream applications. Instead, each (j;,[;) tuple in each
path must be replaced by the actual [;-length prefix of the
read j; and concatenated in order of their occurrence in the
path [30]. In order to do this using a single disk pass, the
lengths and offsets of all paths are calculated and for each
tuple in the path, we calculate and store the prefix length
and its offset within the path. Next, the reads along with the
lists of their prefix-lengths and offsets are indexed using the
read-id as the key. Finally, the reads are streamed from disk,
and for each read, we place the prefixes at the appropriate
offsets. In an edge from read w« to read v, the left overhang
is simply replaced by the prefix of u, and the right overhang
is replaced by the prefix of v since it is assumed that base-
level errors will be corrected in the polishing phase. When
all reads are processed, the resulting strings are then written
back to the filesystem.

4. Evaluation
In this section, we report the experimental results of

Hiper3ga for a wide range of real-world sequence datasets
across several cluster configurations.

4.1. Datasets and Testbed

TABLE 1: Overview of datasets

Name Accn# # Reads  # Bases Longest Avg.
Oyster SRR5986177 163473 2.697 B 119258 16498
Salmonella ~ SRR7415636 737652  4.970 B 81671 6737
Banana SRR7013757 896215 9.221 B 76620 10288
ValleyOak ~ SRR6300394 6343902 17.605 B 67712 2775
Beaver SRR5173103 2387048 35.240 B 19999 14762
KissingBug SRR8466736 8228076 69.384 B 127888 8432
Human ERR2808248 7875243 138976 B 115188 17647




TABLE 2: Comparison of assembly times
*Miniasm failed on 64 GB RAM and was run on a fat node with 256 GB RAM

Dataset | Minimap+Miniasm Hiper3ga
\ 1 node 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes 128 nodes

Human* 1d 14h 35m 37s 2h 15m 28s  57m 5s 32m 39s
KissingBug* | 12h 23m 15s 53m 26s  33m 42s 16m 41s  9m 46s
Beaver 3h 4m 32s 27m 20s  13m 58s 9m 5s 4m 47s 3m Ss
ValleyOak 1h Om 39s 16m 24s  8m 51s 4m 59s 3m 1s 2m 14s Im 20s
Banana 17m 7s 12m 49s  9m 38s 4m 24s 2m 31s 1m 31s Im Os 30s 21s
Salmonella 18m 50s 8m 57s Sm 53s 3m Is 1m 33s 1m 4s 40s 24s 18s
Oyster 2m 19s 2m 32s Im 45s  54s 31s 18s 13s 10s 8s

To evaluate our assembly approach, we use publicly
available PacBio datasets of several species and of various
sizes. The sources and an overview of the characteristics
of the datasets are shown in Table 1. The smallest one is
the Oyster genome containing about 2.7 billion bases in
about 163 thousand reads whereas the largest dataset is the
Human genome with about 139 billion bases in 7.88 million
reads. The datasets are chosen such that the number of bases
roughly double in size from one to the next larger. For all
the datasets, the read lengths have a long-tail distribution
with a few very long reads and a large number of shorter
reads. These shorter reads are generally contained within
the longer ones and can be used for subsequent consensus
generation. All experiments for both Hiper3ga and Minimap
were conducted with a k-mer size of 15 and a minimizer-
window size of 5 as suggested by Minimap.

To compare the execution times Hiper3ga against Min-
imap and Miniasm, we use up to 128 nodes (the maximum
allowed for a job) of the QB2 ? supercomputing cluster.
Each node in QB2 has two 2.8GHz 10-Core Intel Xeon E5-
2680v2 processors, 64 GB RAM, and a 500 GB local hard
disk drive. The nodes are connected by a 56 Gigabit/sec
Infiniband network and have access to a 2.8 PB Lustre dis-
tributed filesystem. To test Miniasm on the larger datasets,
we use big-memory nodes in SuperMIC ? cluster which are
composed of 256 GB RAM and two 2.6GHz 14-Core Intel
Xeon E5-2690v4 processors.

4.2. Comparison of Assembly Times

Table 2 provides a comparative analysis between Min-
imap+Miniasm and Hiper3ga with respect to all-vs-all se-
quence alignment and subsequent assembly. Even on the
smallest dataset (Oyster), Hiper3ga’s performance on a
single node is comparable to that of Minimap+Miniasm
whereas, in 2 and 4 nodes, it achieves a 1.32x and 2.57x
speedup respectively. On the Salmonella dataset, Hiper3ga
performs significantly better even on a single node achieving
more than 2x speedup. This is due to two reasons - 1)
Miniasm is a single-threaded process while Hiper3ga im-
proves upon it by using a fully parallel (and distributed)
computation model and 2) Minimap performs several disk
I/O passes over the data if it is too large to fit in memory.

2. http://www.hpc.Isu.edu/resources/hpc/system.php?system=QB2
3. http://www.hpc.Isu.edu/resources/hpc/system.php?system=SuperMIC

Specifically, Minimap maintains two file pointers to the
input data, one of which is used to read chunks of data,
generate minimizers and index them, while the other is used
to stream all reads and align them to the indexed minimizers
in the chunk. In case of Salmonella, Minimap requires two
disk passes whereas Hiper3ga is able to generate and index
all minimizers in the memory of a single node by compress-
ing the intermediate data to about half its size. The same
applies in case of the Banana dataset where Hiper3ga is
1.34x faster on a single node. Moreover, the assembly phase
for the Salmonella dataset takes an uncharacteristically long
time (as can be seen in figure 9) which puts Miniasm at a
disadvantage compared to Hiper3ga.

In case of the smaller datasets, the speedup saturates in
the larger cluster configurations since the inter-node commu-
nication costs dominate the total execution time. However,
the time difference is starker on larger datasets using more
cluster nodes. For instance, on the KissingBug and Human
genomes processed using 128 nodes, Hiper3ga achieves a
76.1x and 70.9x speedup respectively compared to Min-
imap+Miniasm running on 1 node. As mentioned before,
this comes down to the Minimap’s high disk access cost (it
requires 35 disk passes to process the Human dataset) and
Miniasm’s lack of parallel processing capability. Moreover,
because it is limited by the memory capacity of a single
node, Miniasm runs out of memory for the KissingBug and
Human genome datasets on a thin (64 GB RAM) node and
had to be run on a fat node with 256 GB memory. Note
that Hiper3ga is not evaluated on the larger datasets on a
smaller number of nodes because the number of minimizers
is too large to index in memory.

4.3. Comparison of Assembly Contiguity

Table 3 shows a comparison of assembly contiguity
between Hiper3ga and Miniasm. Along with metrics like
the number of unitigs, their total length, and the length of
the longest contig, we also report the N50 values where an
N50 value of z signifies that each of the longest contigs
that together cover more than or equal to 50% of the total
assembly size are longer than z. It is evident from Table 3
that Hiper3ga’s assembly contiguity is comparable to that of
Miniasm. The differences that occur in the results are due
to the difference in how Minimap and Hiper3ga discard the
most frequently occurring minimizers from the alignment



TABLE 3: Comparison of assembly contiguity. H3 = Hiper3ga, MM = Miniasm.

| #Unitigs | Total Length | Longest | N50 | Median

|H3 | MM | H3 | MM | H3 | MM | H3 | MM | H3 | MM
Oyster ‘ 11 7 167.4 Kbp 93.1 Kbp 37.5 Kbp 25.2 Kbp 21.8 Kbp 16.3 Kbp 16.1 Kbp 15.2 Kbp
Salmonella | 2 4 4.93 Mbp 5.01 Mbp 4877 Mbp 492 Mbp  4.877 Mbp 492 Mbp  2.464 Mbp  38.36 Kbp
Banana | 4205 4245 220486 Mbp 236415 Mbp 4822 Kbp  552.67 Kbp 61.6 Kbp 6531 Kbp 426 Kbp  45.1 Kbp
ValleyOak ‘ 6759 7066 541.882 Mbp 561.158 Mbp  553.6 Kbp 629.9 Kbp 109.2 Kbp  108.441 Kbp 61.6 Kbp 61.1 Kbp
Beaver | 34253 33902 1911 Gbp 1965 Gbp 5654 Kbp 5964 Kbp 680 Kbp 722 Kbp 437 Kbp  44.9 Kbp
KissingBug ‘ 2114 2044 679.146 Mbp  677.180 Mbp  6.525 Mbp 5.255 Mbp 995.5 Kbp  1.077 Mbp 78.1 Kbp 78.1 Kbp
Human | 3818 3601 2966 Gbp ~ 2962 Mbp 22127 Mbp 22.131 Mbp 3.750 Mbp 3.925 Mbp ~ 88.4 Kbp  90.7 Kbp

process. Specifically, while Minimap discards 0.1% of the
most frequently occurring minimizers from each chunk of
input, Hiper3ga does so using 0.1% of the most frequent
minimizers in the entire dataset.

4.4. Assembly Scalability
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Figure 9: Strong scalability of Hiper3ga from 1 to 128 nodes

Fig. 9 shows the scalability of Hiper3ga on different
datasets using various cluster configurations. To show the
relative performance of Hiper3ga on the different configu-
rations, we normalize the execution times for each dataset
by scaling the 128-node execution time to 1. It can be
seen that for the smallest dataset (Oyster), the execution
is sped up by a factor of 1.72x-1.94x till 16 nodes after
which it decreases to about 1.3x-1.4x when the inter-node
communication dominates the execution time. For slightly
larger datasets such as Salmonella and Banana, a 1.5x-2.0x
speedup is sustained till 64 nodes. In case of the three largest
datasets that we tested (Beaver, KissingBug, and Human),
the 1.5x-2.0x speedup can be observed till 128 nodes. Note
that the speedup obtained on 2 nodes from 1 node in case
of Oyster, Salmonella, and Banana is slightly reduced (1.3x-
1.5x) due to the introduction of internode communication.

In some cases, we can see a 2x or more speedup while
doubling the number of nodes. This is because Hiper3ga
allocates large contiguous chunks of memory that act as
buffers to reduce the number of messages between nodes by
increasing the message size, and the buffer sizes are larger
with fewer nodes, resulting in stalls if the memory is too
fragmented. These stalls sometimes offset the higher com-
munication costs incurred on larger cluster configurations.
Instances of this scenario can be seen in the Human and

KissingBug genomes where the speedups achieved going
from 32 nodes to 64 nodes are 2.37x and 2.02x respectively.

Fig. 9 also shows the contribution of each phase towards
the total execution time. The Index phase (which in this
figure also includes the Map and Shuffle phases) is the
most scalable part of the pipeline because it requires a min-
imal number of communication steps. Although the Shuffle
phase involves a lot of data transfer, the communication
pattern is characterized by small numbers of very large
payloads which GASNet handles efficiently, often reaching
peak throughputs of 2 to 3 gigabytes per second (16-24
Gbps). Evidently, the bulk of the execution time is taken
by the Align phase which is not only the most compute-
intensive but is also the most communication-intensive step
in the pipeline. The assembly phase is the least expensive
in the pipeline and executes in a matter of seconds.

5. Conclusion

In this paper, we present Hiper3ga, a distributed long-
read assembler, inspired by Minimap+Miniasm, which can
assemble large datasets generated from third-generation se-
quences on multiple nodes in a matter of minutes. Our
experimental results demonstrate that Hiper3ga can scale
up to hundreds of nodes and provide about two orders
of magnitude performance improvements over the state-of-
the-art long-read assembler. Moreover, Hiper3ga’s contigs
are comparable in contiguity to Miniasm. As future work,
we plan to improve contig quality by including the base-
level error correction phase using a distributed Partial-Order-
Alignment-based consensus generation with hierarchical or
hybrid strategies. Moreover, we are working on reducing
the execution time even further by using the recently re-
leased GASNet-Ex communication middleware, which sig-
nificantly improves upon the GASNet-1 system that we use
in Hiper3ga.
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