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Abstract. Obtaining overlaps between all pairs from billions of strings
is a fundamental computational challenge in de novo whole genome as-
sembly. This paper presents a memory-efficient, massively parallel algo-
rithm that uses GPUs to find overlaps from large sequencing datasets
with a very low probability of false positives. Here we use a Rabin-
fingerprint-based indexing method which stores the strings with their
fingerprints and uses them to generate the fingerprints of suffixes and
prefixes. We then sort these fingerprints in hybrid CPU-GPU memory
and stream them in GPU to find matches. Experiments show that our
implementation can detect a trillion highly probable overlaps within 1.5
billion DNA fragments in just over two hours. Compared to the exist-
ing CPU-based approach, it routinely achieves speedups of 5-15x while
having a collision rate of 1 in 20 million.

Keywords: Big data · Parallel processing · Memory management · GPU
· Genome assembly

1 Introduction

The knowledge of the structure of DNA can be utilized in a vast range of appli-
cations such as personalized medicine, epidemiology, evolution, food safety and
many more [6]. Deciphering the order of nucleotides in the DNA of a novel organ-
ism consists of two steps. First, a biochemical process called sequencing clones
the DNA, fragments them randomly, and parses fragments into short (100-300
characters long) strings called reads or short-reads. Next, a computational pro-
cess called de novo assembly is employed to find suffix-prefix overlaps between
all pairs of reads and merge overlapping reads to recreate the original sequence.
Sequencing projects routinely produce datasets with billions of reads. Assem-
bling such datasets, and more specifically, finding all-pair suffix-prefix overlaps
(APSPO) between billions of strings, is computationally expensive. On a large
dataset, this step could take nearly a day, even on high-end servers.

In recent times, Graphics Processing Units (GPUs) have seen widespread
adoption in general-purpose data processing tasks owing to a higher performance-
per-dollar[4] and performance-per-watt[3] compared to CPUs. In bioinformatics,
several programs that have been ported to GPUs report significant performance
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improvements[15,13,14]. GPU-based implementations of hash tables [12] and suf-
fix arrays [1] have also been used in bioinformatics applications. However, for
de novo assembly, fewer GPU-based implementations have been reported in the
literature, and most of them have only been evaluated on small datasets owing
to their limited memory capacities.

In this paper, we present Empanada1, a faster and more memory-efficient
GPU-based approach to finding APSPO in large sequencing datasets using an
inverted index of O(n) bits. Our main contributions in this work are as follows.
(1) We reduce the index size using a previously unexplored approach of obtain-
ing prefix hashes and avoiding storing them explicitly. (2) We implement this
method on GPUs using NVIDIA Thrust, which also enables it to also run in par-
allel on CPUs. (3) Our implementation can handle datasets much larger than
what can be stored in GPU memory and is amenable to out-of-core execution
using secondary storage. (4) We evaluate our implementation using several real
datasets and observe speedups of two orders of magnitude compared to others.
Using our approach, we found overlaps in datasets with about 3 billion strings
in a little over 3 hours on a single node where other tools ran out of time/space.
(5) Finally, our implementations for sorting and searching in hybrid (host-device)
memory may be helpful in other applications where the data fits in the host but
not the device.

The rest of the paper is organized as follows. In Section 2, we give some
background on de novo assembly and provide a brief exposition of existing works.
Next, we explain our methodology in Section 3, followed by a description of our
implementation details in Section 4. In Section 5, we evaluate our implementation
using real-world datasets of various sizes and compare the execution times with
previous works and finally present our conclusions in Section 6.

2 Background & Related Work

A base is an element of the set Σ = {A,C,G, T}. A read is a string over the alpha-
bet Σ. The Watson-Crick (WC) Complement, also called reverse complement, of
a read p of length l is a read p′ of the same length such that p′[i] = p[l− 1− i]′,
where A′ = T , T ′ = A, C ′ = G and G′ = C. An overlap graph is a directed
weighted graph G obtained using the APSPO in a set of short-reads R and their
WC complements R′ such that a vertex corresponds to si ∈ R∪R′ and an edge
(u, v, w) exists from u to v iff the w-length suffix of the read corresponding to
u is the same as the w-length prefix of the read at v. Naturally, for every edge
e = (u, v, w) in G, there must also exist a complementary edge e′ = (v′, u′, w).

Given three vertices p, q, and r and edges ei = (p, q, wi), ej = (q, r, wj), and
ek = (p, r, wk) in G, ek is a transitive edge if wk = wi − (|q| − wj). Transitive
edges can be removed from an overlap graph without any loss of information. A
string graph is an overlap graph with all transitive edges removed. In de novo
assembly, the string graph is refined and chains in the graph (i.e. vertices with

1 The code is available at https://github.com/sayangoswami/empanada

https://github.com/sayangoswami/empanada
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degree ≤ 1) are collapsed. The reads corresponding to the collapsed vertices are
merged using their edge weights, and the resulting strings are called contigs.

The problem of finding APSPO has been studied extensively, and a time-
optimal solution [8] using suffix trees has been known since 1992. The high
memory overhead of suffix trees has led to approaches using enhanced suffix
arrays which are faster and more memory efficient. Edena [10], the first available
implementation of a string graph-based de novo assembler, uses a suffix array.

Although suffix arrays are more efficient than suffix trees, their space us-
age is still prohibitively large. This necessitated the development of compressed
datastructures such as the compressed suffix array and other compressed full-
text indices like the FM-index. SGA [16] is another string graph assembler that
uses the FM-index and is capable of handling reasonably large datasets.

Dinh et al. have proposed a memory-efficient prefix tree to represent exact-
match overlap graphs and use it to build the LEAP assembler[2]. Compact prefix
trees have also been used by Rachid et al., who use an enhanced B-Tree to find
strings with a specified prefix[9]. One of the most popular string graph assem-
blers, Readjoiner [5], avoids building the entire overlap graph by partitioning
the suffixes and prefixes and processing each partition independently, resulting
in significant improvements in time and memory usage.

GAMS[11] is the first GPU-based string graph assembler and can run on
multiple nodes but is only evaluated on small datasets. LaSAGNA[7] was the
first reported GPU-based string-graph builder that could handle large datasets
using an inverted index from the fingerprints of suffixes and prefixes. It builds
the index out-of-core and stores it on disk, thus reducing the memory usage on
GPU. However, this index takes O(n log n) bits of space on disk for 2n bits of
data. Therefore this approach spends most of the execution time transferring
the index from disk to GPU memory, resulting in low GPU utilization.

This work presents a memory-efficient, parallel, scalable solution that im-
proves upon the fingerprint-based indexing of LaSAGNA by reducing the size of
the index to O(n) bits. This version of the index stores the fingerprints of entire
reads from which the fingerprints of suffixes/prefixes are obtained in O(n) time.

3 Methodology

In this section we present our approach for a space-efficient inverted index. We
assume that reads in a dataset are of the same length l, which is the case for
Next Generation Sequencing (NGS) machines such as Illumina. We use Rabin-
fingerprint to create hashes of all reads in R∪R′ as follows. We choose a large
prime q and define an encoding e : Σ → N which maps every base to [0, σ).
The fingerprint of a base b is given by e(b). Given the fingerprint fi,m of some
m-length substring starting at index i of some read s, we have the following:

fi,m+1 = (fi,mσ + e(s[i+m])) mod q (1)

fi+1,m−1 = (fi,m + q − e(s[i])σm−1 mod q) mod q (2)
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Typically, the rolling hash window expands towards its right and shrinks
from left. Using Eq. 1, if we start with the fingerprint f0,1 of the leftmost base of
a read and successively expand the fingerprint-window, we get the fingerprints
of all prefixes and eventually that of the entire read f0,l. Similarly, using Eq.
2, if we start from the fingerprint of the entire read and successively shrink the
window, we will get the fingerprints of all suffixes.

To store the fingerprints of all prefixes and suffixes as is in LaSAGNA[7], one
needs O(n log q) = O(n log n) bits (q is typically in the order of O(r2), where
r = |R ∪ R′| = n/l). Instead, our approach only uses O(n) bits by storing
the fingerprints of entire reads and regenerating the fingerprints of prefixes and
suffixes from them. Regenerating the suffix fingerprints is straightforward (from
Eq. 2). Our contribution is the procedure for regenerating prefix fingerprints
from reads and their fingerprints which is as follows.

Given a fingerprint fi,m+1 of a read s, our goal is to find fi,m. Note that from
Eq. 1, we have σfi,m ≡ (fi,m+1 − e(s[i + m])) (mod q). Expressed as a linear
diophantine equation,

σfi,m − qk = fi,m+1 − e(s[i+m]) for some k ∈ N (3)

Since σ and q are co-primes, the solutions for fi,m in Eq. 3 belong to exactly one
congruence class modulo q, which is

fi,m ≡ σ−1(fi,m+1 − e(s[i+m]) (mod q)

where σ−1 is the multiplicative inverse of σ in the field Z/q. As q is a prime and
σ is non-zero, σ−1 exists and is equal to σq−2(modq) which can be calculated
using binary exponentiation in log q steps. Moreover, by definition fi,m < q
which implies

fi,m = (σ−1(fi,m+1 − e(s[i+m])) mod q (4)

We can now use the reads and their fingerprints to find overlaps as follows.
We iterate through every read si ∈ R∪R′ and create a tuple (f

(i)
0,l , i), where f

(i)
0,l

is the fingerprint of si. Each fingerprint f (i)
0,l is appended to an array S and each

tuple (f
(i)
0,l , i) is appended to an array P. We also store all reads in an array such

that any base bi,j at position j of a read si can be obtained in constant time.
Next, we find suffix-prefix overlaps in descending order of overlap lengths like

so. We replace each item f
(i)
0,l ∈ S with f

(i)
1,l−1 using Eq. 2. We also replace each

tuple (f
(i)
0,l , i) ∈ P with (f

(i)
0,l−1, i) using Eq. 4. Finally, we sort the tuples in P

by their fingerprints and perform a binary search of all elements of S in P. If
some f

(i)
1,l−1 ∈ S is equal to f

(j)
0,l ∈ P we report with high confidence that read si

has an (l − 1)-length overlap with sj . This process is repeated successively for
lengths l − 2, l − 3, · · · , lmin, where lmin is the minimum overlap length.

Calculating the fingerprints of reads take O(n) time, where n is the number
of bases. At each overlap-detection round, obtaining the fingerprints for suffixes
and prefixes for r reads takes O(r) time and sorting and searching take O(r log r)
time. Since there are O(l) rounds, the total time required to find occurrences
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is O(n log r). Checking whether the occurrences are true positives and adding
the edges in the overlap graph take O(el) time, where e is the total number
of edges. Thus, the total time required is O(n log r + el). A greedy approach
of converting an overlap graph to a string graph is to only retain the longest
overlaps for each read. Here, in each round we could filter out those reads from
S and P which already have an edge. In that case, e = O(r) and the total time is
O(n log r). Storing S and P takes (2r log q + r log r) bits of space which is O(n)
since log r and log q are typically less than l. Storing the original reads requires
an additional 2n bits, since |Σ| = 4.

4 GPU Implementation

In this section, we discuss how we adapt our methodology for the PRAM model
of computation and implement it on GPU. The entire algorithm is implemented
using the NVIDIA Thrust library (included with the CUDA toolkit), which can
execute the program on NVIDIA GPUs or CPUs parallelized using OpenMP or
Intel’s Thread Building Blocks (TBB) with minimal change.

4.1 Overview

Fig. 1: Generating fingerprint-id tuples

Figure 1 depicts the first stage of
building the index - generating finger-
prints of reads. The input file fin is
processed in chunks of m reads such
that the intermediate data fits in de-
vice memory. Next, for each read in
chunk M, we generate fingerprints,
create fingerprint-id tuples, and ap-
pend them to host vector V. We also

generate the fingerprints of reverse complement reads and append the corre-
sponding tuples to V (not shown in the figure for brevity). The original read sj
is assigned the id 2j and its reverse complement 2j + 1.

Note that getting the fingerprints of suffixes and prefixes of length k−1 from
those of length k only requires the bases at two positions - k− 1 for prefixes and
l−k for suffixes. Thus, if R is stored in the host in a column-major order, only the
bases used to generate fingerprints can be bulk-transferred to device and removed
after the fingerprints are generated. Therefore, the reads are transposed and
appended to host vector B so that Bij is the ith base of read j. Fingerprints are
generated using Thrust’s scan_by_key function, and the transpose and reverse
complements are generated using Thrust’s scatter function.

Figure 2 illustrates the second stage - regenerating suffix/prefix fingerprints
and using them to find overlaps. It takes the vector V of fingerprint-id pairs gen-
erated in the previous stage, sorts the pairs, and removes those with identical
fingerprints. The sorting by read-ids ensures that for any read that’s removed, its
reverse complement is removed as well. The main challenge here is that V does



6 S. Goswami

not fit in GPU memory, so we partition it in main memory and stream partitions
to device memory, where they can be processed independently (discussed in Al-
gorithms 1 and 2). The partitioning involves only an O(log r) number of random
accesses in the host memory. Most random access operations are offloaded to
GPU.

Fig. 2: Finding overlaps

One consequence of partitioning is that both P and S must now store tuples
of fingerprints and read-ids, instead of the method described in Section 3, where
S only consisted of fingerprints. The fingerprint generation can be done in bulk
if both P and S are sorted by read ids since the bases in B are already arranged
according to their read ids. After the fingerprints are regenerated as per Eq 2 and
Eq 4, both the vectors of suffix- and prefix-pairs are sorted by their fingerprints.

The sorted vectors of suffix and prefix pairs are partitioned again, and the
partitions are streamed to GPU to search for overlaps. We use Thrust’s vector-
ized binary search functions to search for each suffix fingerprint in the list of
prefix fingerprints. Specifically for each suffix fingerprint fi, we first search for
the lower bound and then for the upper bound of fi in the array of prefix fin-
gerprints. The difference between the upper and lower bounds gives the number
of times fi occurs in the array of prefix fingerprints. We then filter out the read-
ids whose corresponding fingerprints have non-zero occurrences in both vectors,
convert them to an edge-list format and write to the output file.

4.2 Sorting and searching in hybrid-memory

The sorting of vectors and searching for keys are performed in hybrid-memory,
i.e., both the host and device memories. As stated before, most work is done on
the GPU, and the CPU is responsible for partitioning the vectors so that the
GPU can process each partition independently. Furthermore, since the vectors
can be enormous, we want to perform these operations using a constant amount
of auxiliary space in the host memory.

To achieve this, we use a non-contiguous host vector where data is stored in
blocks. This lets us allocate and free chunks of data whenever necessary so that
the peak memory usage is kept in check. The host-vector consists of a queue of
smaller arrays and supports appending new data at the end and reading (and
popping) data from the front. When writing to vectors, the data is appended to
the last block in the queue. When the last block is full, a new one is allocated and
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pushed into the queue. Data is read from the first block in the queue, and the
number of items read is tracked. Once a block is consumed, it’s popped from the
front of the queue, and the memory is freed. In the actual implementation, we
use a memory pool of blocks where freed blocks are stored and reused so that the
repeated allocations and deallocations do not negatively impact performance.

In addition to sequential reads and writes, these vectors also support random
accesses with the [] operator. This is useful in partitioning sorted vectors for
streaming them into device memory, particularly for the lower_bound function.
The lower bound of a key in a sorted vector is the smallest index at which the
key can be inserted without invalidating the sorted order.

1 function get_merge_partition_sizes (A,B,m)
2 p ← list<pair<int, int>>, oA ← 0, oB ← 0
3 while oA < A.n and oB < B.n
4 nA ← min(A.n− oA,m/2), nB ← min(B.n− oB ,m/2)
5 if nA < m/2 and nB < m/2 then:
6 p.push_back((nA, nB))
7 break;
8 else:
9 k ← min(A[oA + nA − 1], B[oB + nB − 1])

10 nA ← A.lower_bound(oA, oA + nA, k)− oA
11 nB ← B.lower_bound(oB , oB + nB , k)− oB
12 p.push_back((nA, nB))
13 oA ← oA + nA, oB ← oB + nB

14 if oA = A.n or oB = B.n then:
15 if oA = A.n and oB < B.n then p.push_back((0, nB − oB))
16 else p.push_back((nA− oA, 0))
17 return p

Algorithm 1: Partitioning a non-contiguous host vector

The pseudocode for partitioning a pair of sorted non-contiguous host vec-
tors is shown in Algorithm 1. The partitioning function accepts an argument m
which specifies the maximum size of each partition. If then slides an (m/2)-sized
window over each vector and resizes the windows based on the minimum of the
last elements in both (lines 9-11). The partitions resulting from this algorithm
splits the key-ranges of both the vectors in a way such that if a key k is present
in partition j of one of the vectors A, then it will not be present in any other
partition in A and if k is present in vector B, then it will only be present in
partition j of B.

The vectors are sorted in device memories as shown in algorithm 2. The vec-
tors are loaded on the GPU in chunks of m and sorted using Thrust’s sort_by_key
function. These sorted chunks are then iteratively merged to obtain a single
sorted vector. The merge algorithm uses the partition function in Algorithm 1
to split the vector of keys into independent partitions, loads these partitions into
GPU and merges them by keys (fingerprints). In practice, the merging is also
performed using radix sort. During the sorting and merging phases, the data
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blocks popped from the vectors are freed, thereby keeping the auxiliary memory
usage limited to O(b), where b is the block size of the vector.

1 function sort_by_key (K,V )
2 s ← queue<pair<vector, vector>>
3 dK and dV are m-length arrays of keys and vals on the device
4 repeat until K is empty
5 s.emplace_back()
6 load upto m items from K and V into dK and dV
7 gpu_sort_by_key (dK , dV )
8 s.back().first.push_back (dK , length(dK))
9 s.back().second.push_back (dV , length(dV ))

10 while length (s) > 1
11 Ka, Va ← s.pop_front()
12 Kb, Vb ← s.pop_front()
13 Kc, Vc ← merge_by_key (Ka, Va,Kb, Vb)
14 s.push_back ((Kc, Vc))
15 K ← s.back().first, V ← s.back().second
16
17 function merge_by_key (Ka, Va,Kb, Vb)
18 Kc ← vector, Vc ← vector
19 dK and dV are m-length arrays of keys and vals on the device
20 P ← get_merge_partition_sizes (Ka,Kb)
21 ∀p ∈ P:
22 nA ← p.first, nB ← p.second
23 if nA and nB

24 kA→pop_front (dK , nA)
25 kB→pop_front (dK + nA, nB)
26 vA→pop_front (dV , nA)
27 vB→pop_front (dV + nA, nB)
28 gpu_sort_by_key (dK , dV )
29 kC→push_back (dK , nA + nB)
30 vC→push_back (dV , nA + nB)
31 else if nA

32 pop nA items from Ka and Va and push into Kc and Vc

33 else
34 pop nA items from Ka and Va and push into Kc and Vc

35 return Kc, Vc

Algorithm 2: Sorting in hybrid memory

5 Results

5.1 Datasets and Testbed

We evaluate our implementation (Empanada) on several real-world datasets
whose Sequence Read Experiment (SRX) IDs are given in Table 1. All datasets
were generated using Illumina genome sequencing machines and were obtained
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from the NCBI Sequence Read Archive2. They are chosen so that they have
similar (or the same) read lengths, and the number of bases roughly doubles in
size from one dataset to the next.

Table 1: Datasets used.

SRX ID Name l |R| n

10829778 Fruitfly 152 83.6M 12.7 GB
14756245 Salamander 151 165M 24.9 GB
10572708 Butterfly 151 343.7M 51.9 GB
10301361 Starling 151 723.8M 109.3 GB
1382207{4,6} Pig 151 1355.4M 204.7 GB

l: Read-length, |R|: Number of reads, not in-
cluding reverse complements, n = l× |R|: num-
ber of bases

All experiments were per-
formed on the Expanse cluster in
San Diego Supercomputing Cen-
tre3. Each GPU node has 384
GB RAM, two 20-core 2.5 GHz
processors, four NVIDIA V100,
each with 12 GB device mem-
ory, and a 1.6TB NVME SSD.
Empanada uses a single CPU
thread and a single GPU in a
shared-node setting. The maxi-
mum memory available for Em-
panada was limited to 90 GB for
the first 4 datasets (Fruitfly, Sala-

mander, Building, Starling) and 180 GB for the Pig dataset. Each Compute
node has two 64-core 2.5 GHz processors, 256 GB RAM and a 1TB NVME
SSD. Compute nodes were used to run SGA and Readjoiner in exclusive mode,
with access to all cores and the full available memory. Both types of nodes have
access to 12PB Lustre filesystem, but we used SSDs for I/O.

5.2 Execution times

The total execution times of Empanada are reported in Table 2. We use a min-
imum overlap length of 55% of the read length, which is at the lower end of
what is used in most string-graph-based assemblers. As previously mentioned,
creating a string graph requires the sparsification of an overlap graph which can
be done by removing transitive edges or retaining only the longest overlaps per
read. We report the execution times with and without the greedy longest-edge
retention approach. The time elapsed for fingerprint generation (tf ) includes that
of reading input data. t(g)o and t

(f)
o denote the time required to obtain overlaps

with and without the greedy edge retention, respectively. They include the time
taken to remove duplicate reads and write the edges on the disk.

For the largest dataset with 2.3 billion unique reads (ru), each 151 bases long,
Empanada finishes in under 4.5 hours (t(f)). When it retains only the longest
overlaps for each read, Empanada takes under 2.5 hours (t(g)). As expected, when
only the heaviest edges are retained, the number of edges E(g) grows linearly with
ru, whereas when no edges are discarded, the number of edges E(f) explodes.

We define the collision rate for strings of length j as (1 - the number of
unique fingerprints generated ÷ the total number of unique suffixes/prefixes of
length j). The total collision rate (n(g)

c ) is defined as the sum of collision rates
2 https://www.ncbi.nlm.nih.gov/sra/
3 https://www.sdsc.edu/support/user_guides/expanse.html

https://www.ncbi.nlm.nih.gov/sra/
https://www.sdsc.edu/support/user_guides/expanse.html
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Table 2: Reads, Edges and Execution times

Data r tf ru t
(g)
o t(g) E(g) t

(f)
o t(f) E(f)

FFY 164M 33s 107M 2m26s 2m59s 83M 5m7s 5m40s 104.75B
SMR 329M 1m39s 261M 10m41s 12m20s 73M 13m15s 14m54s 4.55B
BFY 687M 3m51s 504M 5m34s 9m25s 417M 28m9s 32m0s 26.72B
SLG 1.45B 9m14s 1.37B 1h7m59s 1h17m13s 618M 1h54m50s 2h4m4s 1.67T
PIG 2.71B 17m37s 2.34B 1h56m42s 2h14m19s 1.4B 3h55m58s 4h13m35s 127.79B

r: number of error-free reads and reverse complements, tf : time taken to generate
fingerprints, ru: number of unique reads (and reverse complements), t(g)o : time taken
to find overlaps with greedy edges, t(g): total time with greedy edges, E(g): number of
greedy edges created, t(f)

o : time taken to find overlaps without any edge-removal, t(f):
total time without any edge-removal, E(f): number of edges created.
M = Million, B = Billion, T = Trillion

of all suffixes/prefixes from lmin to l, when edges are selected greedily. In all our
experiments, the fingerprints were generated using two 29-bit pseudo-Mersenne
primes and combined into one 58-bit integer (stored as a 64-bit integer) to avoid
integer overflows during multiplications. In this setup, n

(g)
c was found to be

1× 10−8 for Butterfly, 2× 10−8 for Starling, and 5× 10−8 for the others. Note
that the other tools do not have the issue of false positives, but we claim that
the false positive rate and be made arbitrarily close to 0 by randomly matching
characters of the supposedly overlapping reads.

5.3 Scalability
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Fig. 3: Fingerprint generation time
vs number of reads Memcpy-H2D
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Fig. 4: Time spent of each stage dur-
ing fingerprint generation

Figure 3 shows the time taken to generate
fingerprints w.r.t. the number of reads. It
is evident from the graph that this phase
is highly-scalable across a wide range of data sizes. This is because this phase
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consists of finding reverse complements and transposing bases, both of which
are based on the scatter pattern, which is embarrassingly parallel. The finger-
print generation is based on parallel prefix-scan, which has a linearithmic time
complexity.

Figure 4 presents the time taken by the different parts of the fingerprint
generation phase. The ’process’ stage in the figure includes all the computations
mentioned before. Most of the execution time is spent reading data from disk to
device and copying fingerprint-read tuples and transposed bases from device to
host. Both of these stages depend only on the data size and hence scale almost
perfectly. This figure demonstrates that the major bottleneck in this phase is
I/O. The performance of the data-copying could be improved with GPU-Direct
which bypasses host memory when transferring data from disk to GPU. We plan
to explore this in future work.
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Fig. 5: Overlap detection time vs
number of unique reads

Figure 5 plots the time taken to re-
move duplicates and find overlaps of up
to 55% of the read lengths vs the num-
ber of unique reads. Figure 5 (a) consid-
ers the execution times when all edges
are retained. In this scenario, the time
spent on overlap detection grows almost
linearly with the number of unique reads,
with a slight upward trend starting from
the Butterfly dataset. This is because, for
smaller datasets, the fingerprint-id pairs
can be loaded into the GPU and sorted at
once, whereas for Starling and Pig, sort-
ing the lists requires multiple passes over
the data.

In Figure 5 (b), the execution times
are reported for the cases when only the
heaviest edges per vertex were retained.
In this case, we observe that the over-
lap detection time does not always grow
predictably with an increase in the num-
ber of reads. For instance, the Butterfly
dataset finishes quicker than Salamander
- a dataset half its size.

To investigate the reason behind this,
we study the progression of the overlap detection phase for the three smallest
datasets in Figure 6. For the three subfigures in Fig. 6, the x-axis depicts the
overlap round i, during which the program obtains matching suffix-prefix pairs
of length (i+1). Figure 6 (a) shows the number of edges created at each overlap
round. We can observe that for the butterfly dataset, about 100 million edges
are created during the first overlap round, which is much larger than the two
smaller datasets. The vertices from which these edges emerge are removed from



12 S. Goswami

0 25 50 75
0.00

0.25

0.50

0.75

1.00
Ed

ge
s 

C
re

at
ed

1e8 (a)
Fruitfly
Salamander
Butterfly

0 25 50 75
Overlap Round

1

2

3

4

5

V
er

ti
ce

s 
A

ct
iv

e

1e8 (b)

0 25 50 75

5

10

15

20

T
im

e 
(s

ec
on

ds
)

(c)

Fig. 6: Edges created vs overlap detection time

the list before the start of the next overlap round. This effect can be seen in
Figure 6 (b), which plots the number of active vertices per round. Due to the
large number of edges discovered in the first few rounds, the number of active
vertices decreases sharply, reducing the search space considerably. Consequently,
the search time also decreases within the first few rounds. Eventually, searching
in the Butterfly dataset finishes faster than in the smaller Salamander dataset.
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In Figure 7, we examine the individual stages of the edge-building phase
across all overlap lengths and study their contributions towards the execution
time. The plot shows that most of the time is spent on regenerating fingerprints
and sorting them. These two phases display a quasilinear trend consistent with
their respective algorithms having multiple merge passes. Note that regenerating
fingerprints also involves sorting, which takes up a considerable portion of its
time (discussed later). The search phase also significantly contributes to the
execution time but grows more slowly (almost linearly) with increasing data
sizes. Again, this is consistent with the algorithm, which comprises creating
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vertex pairs and writing them to disk. The stage ’unique’ is a one-time removal
of duplicates before the start of overlap detection and takes very little time.

In Figure 8, we inspect the components of the three most time-consuming
stages of overlap detection - fingerprint regeneration, sorting, and searching in
light of their share of execution times for Pig (deeply shaded bars) and Starling
(lightly shared bars). To begin with, it is readily apparent that host-to-device
(H2D) and device-to-host (D2H) data transfers take up most of the time across
all three stages for both datasets. As indicated before, regenerating fingerprints in
a batch requires sorting them by their read-ids, which for large datasets requires
multiple passes. Indeed, sorting and the associated data transfers are the most
time-consuming steps in this stage, as seen in the figure. The actual computation
of fingerprints which involves Thrust’s partition and transform methods, is al-
most insignificant in comparison. A similar trend can be observed in the sorting
and search stages, where memory transfers dominate the actual computation.
We are exploring avenues for alleviating this bottleneck from an algorithmic
perspective.

5.4 Comparison of execution times with other tools
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Fig. 9: Comparison of execution times of Empanada with Readjoiner and SGA

Figure 9 compares the performance of Empanada with Readjoiner and SGA,
the only string graph assemblers that can handle large short-read datasets. We
only use the results of preprocess, index, filter and overlap stages of SGA and the
prefilter and overlap phases of Readjoiner. For each dataset, we report the results
of 3 experiments where we set the minimum overlaps to 85%, 75%, and 65% of the
read lengths. For Empanada, we study the performance both with and without
transitive edge removal. Note that Readjoiner could not process the Starling
dataset due to some unknown error and the Pig dataset due to insufficient disk
space. SGA could not process Pig due to some unknown error and could process
Starling within the maximum allowed time (72 hours) only when the minimum
overlap was set to 85%. It can be seen that even when Readjoiner is run on 128
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cores, Empanada with greedy edge retention (Empanada-G) is at least 4 times
faster (in case of Salamander, 85%) and has a median speedup of about 8x.
Compared to SGA, Empanada-G has a speedup of 7x at minimum with a median
of 18.5x. All of these results are not only significantly better than SGA, but also
outperforms our previous tool (LaSAGNA) by a considerable margin. Although
we couldn’t test LaSAGNA on the Expanse cluster on the large datasets due to
a lack of local disk space, for the Fruitfly and Salamander datasets, Empanada
finished about thrice as fast as the single-node implementation of LaSAGNA.

6 Conclusions

In this work, we introduce a new memory-efficient, parallel and highly scalable
suffix-prefix indexing method using Rabin fingerprints that can find a trillion
overlaps in a billion strings in a couple of hours on a single node using a single
GPU. Our approach uses a non-contiguous vector to perform an in-place parallel
merge sort of data in a two-level memory model, thereby allowing it to process
data much larger than GPU memory. Experimental results demonstrate that
our implementation outperforms existing approaches by a significant margin and
exhibits almost linear scalability on a wide range of data sizes. In the future,
we plan to implement a multi-gpu version, and also study the possibility of a
heterogeneous cpu-gpu implementation. As an extension to this work, we will
also perform more detailed analyses on the assembly accuracy.
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